جامــعة بغـــداد

حول المقاسات شبة-الأغمارية رئيسية والمقاسات نصف-الأغمارية

رساله
مقدمه الى كلية العلوم- جامعة بغداد كجزء من منطلبات نيل درجة مـاجستير علوم في الرياضبات
علي كريم قـبل

صَدَقَ الْلَهُ آلَحْظِيمْ
البقرة/ آية ^. .

الا هداء

الىى هادي الامـة ورسول الرحمة محمد بن عبد الله (ص)
الى والدي العطوفين

الى اخوتي الاعزاء

الى اختي الغالية

اهدي هذا الجهد المتواضع

شككر وتقفير
الحمــد له رب العـالمين والصــلاة والسـلام علـى أشـرف الأنبيــاء والمرسـلين
الرسول الأمين محمد واله وصحبه ألطاهرين
أتقدم بالثكر الجزيل الـى رائد الفكر المعاصر الأستاذ الدكتور عـادل غسـان نعوم و أثنكر الاككور هوه وسن خالد لوقوفهما معي في مرحلة اعداد البحث ولا أنسى ان أذكر أصدقائي الذين ساعدوني في مرحلة اعداد البحث وبـالأخص أخي

وصديقي محمد علي مراد النداوي .
واله ولي التوفيق

I certify that this thesis was prepared under my supervision at the University of Baghdad as partial requirements of the degree of Master of Science in Mathematics.

Signature:	Signature:
Name:	Name:
Member:	Member:
Date:	Date:

In view of the available recommendations, I forward this thesis for debate by the examining committee.

Signature:
Name:
Chairman of the Department Committee
of Graduate Studies in Mathematics
Date:

We certify that we have read this thesis and as examining committee examined the student in its context and that in our opinion it is adequate for the partial fulfillment of the requirements for the degree of Master of Science in Mathematics with () standing .

Signature:
Name:
Member:
Date:

Signature:
Name:
Member:
Date:

Signature :
Name :
Chairman
Date :

Approved by University Committee of Graduate Studies

Signature :
Name :
Dean of the College of Science
Date :

TABLE OF CONTENTS

SUBJECT	PAGE NUMBER
ABSTRACT	
INTRODUCTION	I
CHAPTER ONE PRINCIPALLY QUASI-INJECTIVE MODULES AND PRINCIPALLY INJECTIVE RINGS	1
INTRODUCTION	1
1.1 Principally Quasi-Injective Modules	3
1.2 The Jacobson Radical and Related Concepts	16
1.3 Further Results On Principally Injective Rings	24
CHAPTER TWO PRINCIPALLY QUASI-INJECTIVE MODULES AND OTHER CLASSES OF MODULES	r.
INTRODUCTION	r.
2.1 The Endomorphism Ring of a Principally Quasi-Injective Modules.	r
2.2 Uniform Submodules	r7
2.3 Quasi -Principally - Injective Modules and Continuous Modules	ε.
CHAPTER THREE SEMI - INJECTIVE MODULES AND FULLY STABLE MODULES	¢0
INTRODUCTION	¢0
3.1 On the Endomorphism Ring of a Semi - Injective Module	¢ 7
3.2 Fully Stable Modules	00
REFERENCES	01

(المستخلص

 رئبسي شبه - أغماري أذا كان لكل تنـاكل مقاسي على R من أي مقاس جزئي دوري منM الى M يمكن توسيعه الى حلقة التنـاكات في M ألدقاس N على R R M المقاس M على R يسمى نصفـ أغماري اذا كان M هو M - رئبسي أغماري . أن هذه المفاهيم درست من فبل نكلسون، يوسف، و ونكوال ـ الغرض الرئيسي من هذه الافكار هو دراسة المقاسات الرئيسية شبه - أغمارية والمقاسات نصف -اغمارية . سنحاول اعطاء تفاصيل البر اهين للنتائج المعروفة ، نورد بعض الامثلة ، ونضيف بعض النتائج الجديدة.

Introduction

Let R be a commutative ring with 1 and M is a unitary right R -module and $S=E^{2} d_{R}(M)$. In [15] Nicholson, Park and Yousif studied principally quasi-injective modules where M is called principally quasi-injective module if each R-homomorphism from a principal submodule of M to M can be extended to an endomorphism of M, a ring R is called principally injective if R is a principally quasi-injective R -module [15]. In [21] Wongwal studied M-principally injective modules where an R -module N is called M-principally injective if every R-homomorphism from M-cyclic submodule K of M to N can be extended to M . An R-module M is called semi-injective if it is M-principally injective. In [8] Chotchaisthit asks the following question: for an R-module, when is a quasi- principally-injective module continuous?. An R-module M is called continuous if M has c_{1}-condition and c_{2}-condition where M is said to have the c_{1}-condition if every submodule of M is essential in a direct summand of M [8], and it has c_{2}-condition if every submodule of M which is isomorphic to a direct summand of M is itself a direct summand of M [15].

The main goal of this thesis is to study principally quasi-injective modules, semi-injective modules and their endomorphisms rings. Further we examine their relations with other known concepts like, local rings ,uniform modules, duo module, self-generators, summand intersection property, summand sum property. We give the details of known results and some examples. We also add few new results (to the best of our knowledge).

The material presented in this thesis is organized in three chapters. Each of chapters one and two is divided into three sections and chapter three consist of two sections.

In section 1, chapter 1, we study different characterization of principally quasi-injective modules (Theorem (1.1.9).

In section 2, we study the Jacobson radical of S and related concepts such as singularity (Theorem (1.2.10). Further we look at the properties of the ideal $\mathrm{W}(\mathrm{S})=\{\mathrm{w} \in \mathrm{S} \backslash 1-\beta \mathrm{w}$ is monomorphism for all $\beta \in \mathrm{S}\}$, in principally quasi-injective modules (proposition(1.2.5)).

In section 3, we study further results on principally-injective rings and some notions as weakly injective.

In chapter two we study principally quasi-injective modules and their relations to other classes of modules.

In section 1, we study the relation between principally quasi-injective modules and some properties as a summand intersection property, summand sum property and c_{3}-condition, these properties can be found in [15], [5], [4]. In section 2, we study uniform submodules. Many of the ideas in this section trace back to camillo [7].
In section 3, we study the relation between principally quasi-injective modules and continuous modules. The main result of this section appeared in (proposition (2.3.1)). We also study duo principally quasi-injective (proposition (2.3.7)).

In chapter three we study semi-injective modules and fully stable modules.

In section 1, we look at the relation between semi-injective modules with π-injectivity and direct injectivity (Theorem (3.1.11)).
In section 2 , we study fully stable and fully invariant modules in principally quasi-injective modules and rings.

CHAPTER ONE

PRINCIPALLY QUASI-INJECTIVE MODULES AND PRINCIPALLY INJECTIVE RINGS

Introduction

Let M be an R-module with endomorphism ring S . As we mentioned in the introduction, an R -module M is called principally quasi-injective module if each R -homomorphism from a principal submodule of M to M can be extended to an endomorphism of M . In other words, the following diagram is commutative:

The ring R is called principally injective if R is principally quasi-injective as an R-module [14].

The concept of principally quasi-injective modules was introduced in 1999.

In this chapter we study principally quasi-injective modules and principally injective rings. We recall the known results about these concepts and we give the details of the proofs of these results, we also add few new results (to the best of our knowledge).

This chapter consists of three sections.
In section 1, we recall the definitions of principally quasi-injective module and principally injective ring. More over, we recall some properties about principally quasi-injective modules.

In section 2, we study the Jacobson radical of the ring of endomorphism S of a principally quasi-injective module and its relation with other concepts.

In section 3, we study principally injective rings. Some of the results about these rings are corollaries to corresponding results on principally quasi-injective modules.

Section 1.1 Principally Quasi-Injective Modules:

In this section we study principally quasi-injective modules and their endomorphism rings. Most of the results of this section appeared in [14],[15]. However, we give the details of the proofs and add few new results (to the best of our knowledge).

Recall that an R-module M is injective if given any monomorphism $f: A \rightarrow B$ and any homomorphism $g: A \rightarrow M$, there exists a homomorphism $h: B \rightarrow M$ such that $h \circ f=g$. In other words the following diagram is commutative where A, B are R -modules.

Equivalently, an R-module M is injective if for every ideal L_{R} of R_{R} and any homomorphism $g: L \rightarrow M, \mathrm{~g}$ can be extended to a homomorphism $h: R \rightarrow M$ [10, p.130].

It is well known that Q as a Z -module is injective[11], but Z as a Z-module is not injective module. In fact, let $f: 2 Z \rightarrow Z$ be defined by $f(2 n)=3 n \quad \forall n \in Z$.If there is $h: \mathrm{Z} \rightarrow \mathrm{Z}$ which extends $f, \mathrm{~h} \circ \mathrm{f}=i$,then $h(f(2 n))=h(3 n) \neq 2 n=i(2 n)$

In particular, if $n=1$, then $h(f(2))=h(3)=3 \neq 2=i(2)$. Hence $h \circ f \neq i$

Definition 1.1.1 [6]:

An R-module M is said to be quasi-injective if any homomorphism $f: A \rightarrow M$ where A is a submodule of M , can be exteneded to an endomorphism $h: M \rightarrow M$, i.e., the following diagram is commutative, where i is the inclusion map.

A ring R is called self-injective (quasi-injective) if it is a quasi-injective R-module.

It is clear that every injective module is quasi-injective so as every simple module. An example of quasi-injective Z-module which is not injective Z-module is $\mathrm{Z} / 2 \mathrm{Z}$, it is simple but it is not injective because it is not divisible.

Definition 1.1.2 [15]:

An R-module M is called principally quasi-injective if each R-homomorphism from cyclic submodule of M to M can be extended to an endomorphism of M , i.e., the following diagram is commutative, $\mathrm{h} \circ \mathrm{i}=\mathrm{f}$

Note 1.1.3: We use the notation P.Q.-injective for principally quasi-injective.

Definition 1.1.4 [14]:

An R-module M is called principally injectuive if each R-homomorphism $\alpha: a R \rightarrow M$ such that $a \in R$, extends to R , i.e., the following diagram is commutative, $\bar{\alpha} \circ i=\alpha$.

Remarks and Examples 1.1.5:

(1) It is clear that every injective module is principally injective.
(2) If every cyclic submodule of M is a summand then M is P.Q.-injective module, in fact, $x R \leq M, x R$ is a direct summand of M , there exists $B \leq M$ such that $M=x R \oplus B$. Now let $\alpha: x R \rightarrow M$ be a homomorphism. Define $\bar{\alpha}: x R \oplus B \rightarrow x R \oplus M$ by $\bar{\alpha}(x r, y)=\alpha(x r)$, it is clear that $\bar{\alpha}$ is an extension of α.
(3) Recall that a module M is called Z-regular if every cyclic submodule is a projective and direct summand [16]. Thus every Z-regular module is P.Q.-injective module.
(4) The ring R is called principally injective if R is a P.Q.-injective R-module [15]. Hence every (von Neuman) regular ring R which is not quasi-injective is an example of a P.Q.-injective module that is not quasi-injective.

Note 1.1.6: We will use P-injective for principally injective

Remark 1.1.7: Let $S=$ end $_{R}(M)=$ the ring of R-endomorphisms of M. If M is a right R -module, then M can be made into a left S -module as follows.

Define $\Phi: S x M \rightarrow M$ by $\Phi(f, m)=f(m)$, then
(1) $\left(f_{1}+f_{2}\right)(m)=f_{1}(m)+f_{2}(m)$
(2) $f(m+n)=f(m)+f(n)$
(3) $\left(f_{1} f_{2}\right)(m)=f_{1}\left(f_{2}(m)\right)$, where $f, f_{1}, f_{2} \in S, m, n \in M$

Note 1.1.8: Let M be an R-module, we fix some notation:
(1) $a n n_{M}(r)=\{m \in M \backslash m r=0\}$.
(2) $a n n_{R}(m)=\{r \in R \backslash m r=0\}$.
(3) $S m=\{f(m) \backslash f \in S\}$.

Theorem 1.1.9:[15]: Given a module M_{R} with $S=e n d\left(M_{R}\right)$, the following are equivalent.
(1) $\forall m \in M$, every R-homomorphism $m R \rightarrow M$ can be extended to an endomorphism in S, i.e., M is P.Q.-injective module.
(2) $a n n_{M} a n n_{R}(m)=S m \forall m \in M$.
(3) If $a n n_{R}(m) \subseteq a n n_{R}(n)$ where $m, n \in M$ then $S n \subseteq S m$.
(4) $\forall m \in M$, if the R-homomorphism $\alpha, \beta: m R \rightarrow M$ are given with β is monomorphism, then there exists $\gamma: M \rightarrow M$ such that $\gamma \circ \beta=\alpha$, i.e., the following diagram is commutative:

Proof. $\mathbf{1} \Rightarrow \mathbf{2}$ Let $f(m) \in S m$ where $f \in S$. If $m r=0$, then $0=f(m r)=f(m) r$. This implies that $f(m) \in a n n_{M} a n n_{R}(m)$, hence $S m \subseteq a n n_{M} a n n_{R}(m)$. To show the opposite inclusion, let $n \in a n n_{M} a n n_{R}(m)$. Define $\gamma: m R \rightarrow M$ by $\gamma(m r)=n r \forall r \in R . \gamma$ is well-defined, in fact, let $m r_{1}=m r_{2} r_{1}, r_{2} \in R, m r_{1}-m r_{2}=m\left(r_{1}-r_{2}\right)=0$, then $r_{1}-r_{2} \in a n n_{R}(m)$, hence $n\left(r_{1}-r_{2}\right)=0, n r_{1}-n r_{2}=0$, implies that $n r_{1}=n r_{2}$. By (1) γ extends to $\bar{\gamma} \in S$.

Now $\mathrm{n}=\gamma(\mathrm{m})=(\bar{\gamma} \circ \mathrm{i})(\mathrm{m})=\bar{\gamma}[\mathrm{i}(\mathrm{m})]=\bar{\gamma}(\mathrm{m}) \in S m$. Hence $\operatorname{ann}_{M}\left(a n n_{R}(\right.$ $m) \subseteq S m$. This proves(2)
$\underline{\mathbf{2} \Rightarrow \mathbf{3}}$ Let $f(n) \in S n$. By (2) $S n=a n n_{M} a n n_{R}(n)$, then $f(n) \in a n n_{M} a n n_{R}(n)$. Since $\quad a n n_{R}(m) \subseteq a n n_{R}(n), \quad$ then $a n n_{M} \quad\left(a n n_{R}(\right.$ $\left.m) \subseteq a n n_{R}(n)\right)=a n n_{M} a n n_{R}(n) \subseteq a n n_{M} a n n_{R}(m)$. This implies that $f(n) \in$ $a n n_{M} a n n_{R}(m)$. Hence by (2) $f(n) \in S m=a n n_{M} a n n_{R}(m)$. This means $S n \subseteq S m$.
$\underline{\mathbf{3} \Rightarrow \mathbf{4}}$ Since β is monomorphism, we have $\operatorname{ann}_{R}(\beta m) \subseteq \operatorname{ann}_{R}(\alpha m)$, in fact, let $r \in \operatorname{ann}_{R}(\beta m)$, then $\beta(m) r=\beta(m r)=0$. Thus $m r \in \operatorname{ker} \beta$ hence $m r=0, \quad$ so $\quad \alpha(m r)=\alpha(m) r=0 . \quad$ Which implies $\quad r \in \operatorname{ann}_{R}(\alpha m)$, so $a n n_{R}(\beta m) \subseteq a n n_{R}(\alpha m)$. By (3)S $\alpha(m) \subseteq S \beta(m)$. Then there exists $\gamma \in S$ such that $\alpha(m)=\gamma[\beta(m)]$ as required.
$\underline{\mathbf{4} \Rightarrow \mathbf{1}}$ Take $\beta: m R \rightarrow M$ be the inclusion in (4). Then by (4) there exists $\gamma: M \rightarrow M$ such that the following diagram is commutative. Hence $\alpha: m R \rightarrow M$ extends to an endomorphism in S. This means proving (1).

Proposition 1.1.10 [15] : Let M be an R-module, then for each $m \in M, \alpha \in S, S \alpha+a n n_{S}(m) \subseteq a n n_{s}[\operatorname{ker}(\alpha) \cap m R]$.

Equality holds if M is P.Q.-injective module.

Proof. Suppose that $\beta \in a n n_{S}[\operatorname{ker}(\alpha) \cap m R]$
Claim $a n n_{R}(\alpha m) \subseteq a n n_{R}(\beta m)$, in fact, let $r \in a n n_{R}(\alpha m)$, i.e., $\alpha(m r)=0$ $=\alpha(m) r$. Therefore, $m r \in \operatorname{ker}(\alpha) \cap m R$.. Since $\beta \in a n n_{S}[\operatorname{ker}(\alpha) \cap m R]$, then $\beta(m r)=\beta(m) r=0$. Hence $r \in \operatorname{ann}_{R}(\beta m)$. Since M is P.Q.-injective, then by theorem (1.1.9(3)) $\quad \beta(m) \in S \alpha(m)$.Say $\beta(m)=\gamma \alpha(m)$ where $\gamma \in S$, so $\beta(m)-\gamma \alpha(m)=(\beta-\gamma \alpha)(m)=0$, hence $\beta-\gamma \alpha \in \operatorname{ann}_{S}(m)$, thus $\beta \in S \alpha+\operatorname{ann}_{S}(m)$. This means anns[ker $(\alpha) \cap m R] \subseteq S \alpha+a n n_{S}(m)$.

Before the next result we need the following definition [15]. An R-module M is said to be principally self-generator if for every element $\mathrm{m} \in \mathrm{M}$, there exists an epimorphism $\lambda: M_{R} \rightarrow m R$, i.e., there exists $\mathrm{m}_{1} \in \mathrm{M}$ such that $\lambda\left(m_{l}\right)=m$.

For example, every cyclic module is principally self-generator,in particular R_{R} is principally self-generator R -module. More over every Z-regular module is principally self-generator but Q is not[16].

Proposition 1.1.11 [15] : If M is a principal module which is principally self-generator with $S=e n d\left(M_{R}\right)$, then the following conditions are equivalent.
(1) M_{R} is P.Q.-injective module .
(2) $a n n_{S}[k e r(\alpha) \cap m R]=S \alpha+a n n_{S}(m)$ for all $\alpha \in S$ and $m \in \mathrm{M}$
(3) $a n n_{S}[\operatorname{ker}(\alpha)]=S \alpha$ for all $\alpha \in S$.
(4) $\operatorname{ker}(\alpha) \subseteq k e r(\beta)$ where $\alpha, \beta \in S$, implies that $\beta \in S \alpha$.

Proof. $1 \Rightarrow$ 2: This follows from proposition (1.1.10)
$\underline{\mathbf{2} \Rightarrow \mathbf{3}}$ If $\mathrm{M}=m_{o} R$, take $m=m_{o}$ in (2), i.e.,
$a n n_{S}\left[\operatorname{ker}(\alpha) \cap m_{o} R\right]=S \alpha+a n n_{S}\left(m_{o}\right)$. Let $f \in a n n_{S}\left[\operatorname{ker}(\alpha) \cap m_{o} R\right]$, then $f(\mathrm{x})=0$ where $\mathrm{x} \in \operatorname{ker}(\alpha)$ and $\mathrm{x}=m_{o} r$ where $\mathrm{r} \in \mathrm{R}, f(\mathrm{x})=f\left(m_{o} r\right)=f\left(m_{o}\right) r=0$, implies that $r=0$. This gives $a n n_{S}[\operatorname{ker}(\alpha)]=S \alpha$.
$\underline{\mathbf{3} \Rightarrow \mathbf{4}}$ This is because $\operatorname{ann}_{S}[\operatorname{ker}(\alpha)]=\{\beta \in \operatorname{Sker}(\alpha) \subseteq \operatorname{ker}(\beta)\}$, in fact , $\beta[\alpha(m)]=0$, implies $\alpha(m) \in \operatorname{ker}(\beta)$. But $\alpha(m)=0$, hence $m \in \operatorname{ker}(\alpha) \subseteq$ $\operatorname{ker}(\beta)$,i.e., $\operatorname{ann}_{S}[\operatorname{ker}(\alpha)]=\{\beta \in S \backslash \beta[\alpha(m)]=0\} . \operatorname{By}(3), S \alpha=\operatorname{ann} n_{S}[\operatorname{ker}(\alpha)]$, implies that $\beta \in S \alpha$.
$\underline{\mathbf{4} \Rightarrow \mathbf{1}}$ Let $\gamma: m R \rightarrow M$ be R-homomorphism where $m \in M$. Now we will take $M=m_{o} R$ and choose α, β in S such that $m=\alpha\left(m_{o}\right)$ and $\gamma(m)=\beta\left(m_{o}\right)$, we claim that $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}(\beta)$, in fact, if $k \in \operatorname{ker}(\alpha)$, write $k=m_{o} r$ such that $k \in M$, $r \in$ R. Now $\beta(k)=\beta\left(m_{o} r\right)=\beta\left(m_{o}\right) r=\gamma(m) r=\gamma\left[\alpha\left(m_{o}\right) r\right]=\gamma\left[\alpha\left(m_{o} r\right)\right]=\gamma[\alpha(k)]=$ $\gamma(0)=0$. Thus $k \in \operatorname{ker}(\beta)$ and the claim is proved. Hence (4) gives $\beta=\varphi \alpha$ for some $\varphi \in S$. Therefore $\varphi(m)=\varphi\left[\alpha\left(m_{o}\right)\right]=\beta\left(m_{o}\right)=\gamma(m)$. This shows that φ extends γ.

If M_{R} is R , the last proposition takes the following form.

Corollary 1.1.12 [14]: The following conditions are equivalent for a ring R.
(1) R is P -injective as R -module.
(2) $a n n_{R} a n n_{R}(a)=R a$ for all a in R
(3) $a n n_{R}(b) \subseteq a n n_{R}(a)$ where a, b in R, implies $R a \subseteq R b$.
(4) $a n n_{R}\left[b R \cap a n n_{R}(a)\right]=a n n_{R}(b)+R a$ for all a, b in R

Proof. 3 $\Rightarrow \mathbf{4) :}$ Let $x \in a n n_{R}\left[b R \cap \operatorname{ann}_{R}(a)\right]$.
Claim. $a n n_{R}(a b) \subseteq a n n_{R}(x b)$, in fact, let $r \in a n n_{R}(a b)$, i.e., $(a b) r=0=a(b r)$. Therefore $b r \in a n n_{R}(a) \cap b R$. Since $\mathrm{x} \in a n n_{R}[b R \cap a n n(a)]$, then $x b r=0=(x b) r$. Hence $r \in a n n_{R}(x b)$. So by (3) $x b \in$ Rab, implies $x b=r a b$ where $r \in$ R.Thus $x b-r a b=0=(x-r a) b$. Hence $x-r a \in a n n_{R}(b)$ and so $x \in a n n_{R}(b)+R a$.

Proposition 1.1.13 [15]: Let M_{R} be a P.Q.-injective module with $\mathrm{S}=$ end $\left(\mathrm{M}_{\mathrm{R}}\right)$ and let $\mathrm{m}, \mathrm{n} \in \mathrm{M}$.
(1) If $n R$ is an image of $m R$, then Sn embeds in Sm
(2) If $m R$ embeds in $n R$, then Sm is an image of Sn
(3) If $m R \cong n R$, then $S n \cong S m$.

Proof : Assume that $\lambda: m \mathrm{mR} \rightarrow \mathrm{nR}$ is any R -homomorphism, write $\lambda(\mathrm{m})=$ na where $\mathrm{a} \in \mathrm{R}$ and define $\varphi: \mathrm{Sn} \rightarrow \mathrm{M}$ by $\varphi[\alpha(\mathrm{n})]=(\alpha \mathrm{n}) \mathrm{a}=\alpha[\lambda(\mathrm{m})]$ for all $\quad \alpha \in \mathrm{S}$. If $\quad \bar{\lambda} \in \mathrm{S}$ extends λ, then $\varphi[\alpha(\mathrm{n})]=\alpha[\lambda(\mathrm{m})]=$ $\alpha[\bar{\lambda}(\mathrm{i}(\mathrm{m}))]=\alpha[\bar{\lambda}(\mathrm{m})] \in \mathrm{Sm}$, so $\varphi: \mathrm{Sn} \rightarrow \mathrm{Sm}$ is S-homomorphism. Now to prove (1), if λ is epimorphism, then $n=\lambda(m b)$ such that $b \in R$.

Given $\alpha(\mathrm{n}) \in \operatorname{ker} \varphi$, thus $\alpha(\mathrm{n})=\alpha[\lambda(\mathrm{mb})]=[\alpha \lambda(\mathrm{m})] \mathrm{b}$ which implies that $\varphi[\alpha(\mathrm{n})] \mathrm{b}=\mathrm{o} . \mathrm{b}=\mathrm{o}$. Hence Sn embeds in Sm. To prove (2), if λ is monomorphism, then $\operatorname{ann}_{R}(\lambda m) \subseteq \operatorname{ann}_{R}(m)$, in fact, let $r \in \operatorname{ann}_{R}(\lambda m)$, then
$\lambda(\mathrm{m}) \mathrm{r}=\lambda(\mathrm{mr})=0$, so $\mathrm{mr} \in \operatorname{ker}(\lambda)$, but λ is monomorphism, then $\mathrm{mr}=0$, hence $\mathrm{r} \in \mathrm{ann}_{\mathrm{R}}(\mathrm{m})$. So by theorem (1.1.9(3)) $\mathrm{m} \in \mathrm{S} \lambda(\mathrm{m})$, but $\mathrm{S} \lambda(\mathrm{m}) \subseteq$ image φ. Thus $m \in \operatorname{image} \varphi$. This means Sm is an image of Sn .
(3) Follows immediately from (1) and (2).

As a special case of the last proposition we have

Corollary 1.1.14 [14]: Let R be a P-injective ring and $a, b \in R$

(1) If $a R$ is an image of $b R$, then Ra embeds in $R b$.
(2) If bR embeds in aR , then Rb is an image of Ra .

Now we need the following definitions.

Definition 1.1.15 [10,p.106]: Let A be a submodule of an R-module M, it is said that M is essential extension of A or (A is an essential submodule of M, i.e., $A \subseteq^{\text {ess }} \mathrm{M}$ or $\mathrm{A} \leq_{e} \mathrm{M}$) or (A is larger in M) if for every non-zero submodule U of $\mathrm{M}, \mathrm{A} \cap \mathrm{U} \neq 0$.

Example 1.1.16: Z_{6} as a Z -module. If $\mathrm{A}=\{\overline{\mathrm{o}}, \overline{2}, \overline{4}\}$, then $\underset{e}{\mathrm{~A}_{e}} \mathrm{Z}_{6}$. But if $\mathrm{A}=\{\overline{\mathrm{o}}, \overline{2}\} \leq \mathrm{Z}_{4}$, then $\mathrm{A} \underset{e}{\leq} \mathrm{Z}_{4}$.

Definition 1.1.17 [10,p. 212$]$: Let M be an R-module the sum of all minimal (simple) submodules of M is called the socle of M, equivalently, the intersection of all essential submodules of M , it is denoted by $\operatorname{Soc}(\mathrm{M})$. If M has no simple submodule then we put $\operatorname{Soc}(M)=0$. If $\operatorname{Soc}(M)=M$, then M is called semi-simple module.

Example 1.1.18: Z_{6} as a Z -module.
$\operatorname{Soc}\left(\mathrm{Z}_{6}\right)=\{\overline{\mathrm{o}}, \overline{2}, \overline{4}\}+\{\overline{\mathrm{o}}, \overline{3}\}$. Since $\{\overline{\mathrm{o}}, \overline{2}, \overline{4}\},\{\overline{\mathrm{o}}, \overline{3}\}$ have no proper submodule except $\{\overline{\mathrm{o}}\},\{\overline{\mathrm{o}}, \overline{2}, \overline{4}\}$, and $\{\overline{\mathrm{o}}\}$, $\{\overline{\mathrm{o}}, \overline{3}\}$, respectively, then $\operatorname{Soc}\left(\mathrm{Z}_{6}\right)=\mathrm{Z}_{6}$. But $\operatorname{Soc}\left(\mathrm{Z}_{4}\right)=\{\overline{\mathrm{o}}, \overline{2}\}$, hence $\{\overline{\mathrm{o}}, \overline{2}\}$ the only proper submodule of Z_{4}. Therefore Z_{4} as a Z -module is not semi-simple.

The following result relates $\operatorname{Soc}\left(\mathrm{M}_{\mathrm{R}}\right)$ to $\operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right)$.

Proposition 1.1.19 [15]: Let M_{R} be a P.Q.-injective module with S=end(M_{R}).
(1) If $m R$ is a simple R-module, $m \in M$, then $S m$ is a simple S-module.
(2) $\operatorname{Soc}\left(\mathrm{M}_{\mathrm{R}}\right) \simeq^{\text {ess }} \operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right)$.

Proof: (1) Consider the following diagram,

We may assume $\alpha \neq 0$. Since $m R$ is simple, then $\alpha: m R \rightarrow \alpha(m R)$ is an isomorphism, let $\gamma: \alpha(\mathrm{mR}) \rightarrow \mathrm{mR}$ be the invers of $\alpha, \overline{\mathrm{i}}, \mathrm{i}$ are inclusion maps from $m R, \alpha(m R)$ to M respectively. Since M is P.Q.-injective module,then there exists $\quad \bar{\gamma} \in \mathrm{S}$ that extends γ.Now $\bar{\gamma}[\alpha(\mathrm{m})]=\bar{\gamma}[\mathrm{i}(\alpha(\mathrm{m})=\overline{\mathrm{i}}[\gamma(\alpha(\mathrm{m}))]=\gamma[\alpha(\mathrm{m})]=(\gamma \circ \alpha)(\mathrm{m})=\mathrm{m}$.Hencem $\in \mathrm{S} \alpha(\mathrm{m})$.
(2) This follows from (1).

Proposition 1.1.20 [15] : Let M_{R} be a P.Q.-injective module with $\mathrm{S}=\mathrm{end}\left(\mathrm{M}_{\mathrm{R}}\right)$, and let $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}$ be elements of M .
(1) If $\mathrm{Sm}_{1} \oplus \ldots . . \oplus \mathrm{Sm}_{\mathrm{n}}$ is a direct sum, then any R -homomorphism $\alpha: m_{1} R \oplus \ldots \oplus m_{n} R \rightarrow M$ has an extension in S.
(2) If $m_{1} R \oplus \ldots \oplus m_{n} R$ is a direct sum, then $S\left(m_{1}+\ldots+m_{n}\right)=S m_{1}+\ldots$ $+\mathrm{Sm}_{\mathrm{n}}$.

Proof: (1) Let α_{i} and β denote the restriction of α to $m_{i} R$ and $\left(\mathrm{m}_{1}+\ldots+\mathrm{m}_{\mathrm{n}}\right) \mathrm{R}$ respectively and let $\bar{\alpha}_{\mathrm{i}}$ and $\bar{\beta}$ extend α_{i} and β to M . Then $\Sigma_{\mathrm{i}} \bar{\beta}\left(\mathrm{m}_{\mathrm{i}}\right)=\bar{\beta}\left(\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)=\alpha\left(\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \alpha\left(\mathrm{m}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \bar{\alpha}\left(\mathrm{m}_{\mathrm{i}}\right)$. Since $\oplus \mathrm{Sm}_{\mathrm{i}}$ is a direct, we obtain $\bar{\beta}\left(\mathrm{m}_{\mathrm{i}}\right)=\bar{\alpha}\left(\mathrm{m}_{\mathrm{i}}\right)$, in fact, $\bar{\beta}\left(\mathrm{m}_{1}\right)+\ldots+\bar{\beta}\left(\mathrm{m}_{\mathrm{n}}\right)=$ $\bar{\alpha}\left(\mathrm{m}_{1}\right)+\ldots+\bar{\alpha}\left(\mathrm{m}_{\mathrm{n}}\right)$, so $\bar{\beta}\left(\mathrm{m}_{1}\right)-\bar{\alpha}\left(\mathrm{m}_{1}\right)=\bar{\alpha}\left(\mathrm{m}_{2}\right)+\ldots+\bar{\alpha}\left(\mathrm{m}_{\mathrm{n}}\right)-\bar{\beta}\left(\mathrm{m}_{2}\right)-\ldots-$ $\bar{\beta}\left(\mathrm{m}_{\mathrm{n}}\right) \in \mathrm{S}_{\mathrm{m} 1} \cap_{\mathrm{j} \neq 1} \oplus \mathrm{~S}_{\mathrm{m} \mathrm{j}}=0$, then $\quad \bar{\beta}\left(\mathrm{m}_{1}\right)-\bar{\alpha}\left(\mathrm{m}_{1}\right)=0 \quad[\mathbf{1 0}, \mathbf{p} . \mathbf{3 0]}$, hence $\bar{\beta}\left(\mathrm{m}_{1}\right)=\bar{\alpha}\left(\mathrm{m}_{1}\right)$. By the same way we get $\bar{\beta}\left(\mathrm{m}_{\mathrm{i}}\right)=\bar{\alpha}\left(\mathrm{m}_{\mathrm{i}}\right)=\alpha\left(\mathrm{m}_{\mathrm{i}}\right)$, so $\bar{\beta}$ extends α.
(2)Define $\alpha_{i}:\left(m_{1}+\ldots+m_{n}\right) R \rightarrow M$ by $\alpha_{i}\left[\left(m_{1}+\ldots+m_{n}\right) r\right]=m_{i} r \quad \forall r \in R$. Then α_{i} is well defined. Since M is P.Q.-injective module, then there exists $\quad \bar{\alpha}_{i} \in S$ that extends α_{i}, hence $m_{i}=\alpha_{i}\left(\sum_{i} m_{i}\right)=\bar{\alpha}_{i}\left[i\left(\Sigma_{i} m_{i}\right)\right]=$ $\bar{\alpha}\left(\Sigma_{i} \mathrm{~m}_{\mathrm{i}}\right) \in \mathrm{S}\left(\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)$ and it follows that $\Sigma_{\mathrm{i}} \mathrm{Sm}_{\mathrm{i}} \subseteq \mathrm{S}\left(\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)$. The reverse inclusion always holds.

To prove the next result we need the following defintion [21]. A submodule N of an R -module M is said to be fully invariant if for each endomorphism $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}, \mathrm{f}(\mathrm{N}) \subseteq \mathrm{N}$.

For example every submodule of Z as a Z -module is fully invariant. But Z as a submodule of Q is not fully invariant. More over, it is known that every submodule of a multiplication R -module is fully invariant [17].

Proposition 1.1.21 [15]: Let M_{R} be a P.Q.-injective module with $S=$ end $\left(M_{R}\right)$, and let $A, B_{1}, B_{2}, \ldots, B n$ be fully invariant submodules of M_{R}. If $B_{1} \oplus \ldots . . \oplus B_{n}$ is a direct, then $A \cap\left(B_{1} \oplus \ldots \ldots B_{n}\right)=\left(A \cap B_{1}\right) \oplus \ldots \oplus$ $\left(A \cap B_{n}\right)$.

Proof: It is known and is easy to check that $\oplus_{i}\left(A \cap B_{i}\right) \subseteq A \cap\left(\oplus_{i} B_{i}\right)$. Now consider the following diagram.

Let $\mathrm{a}=\Sigma_{\mathrm{I}} \mathrm{b}_{\mathrm{i}} \in \mathrm{A} \cap\left[\oplus_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}\right]$ and let $\pi_{\mathrm{k}}: \quad \stackrel{\mathrm{n}}{\oplus} \mathrm{b}_{\mathrm{i}} \mathrm{R} \rightarrow \mathrm{b}_{\mathrm{k}} \mathrm{R}$ be the projection
 Sinec $\oplus \mathrm{Sb}_{\mathrm{i}}$ is a direct sum, then by prposition (1.1.20) each $\pi_{\mathrm{k}}^{\mathrm{i}=1}$ has an extension $\quad \bar{\pi}_{\mathrm{k}}$ in S, i.e., $\bar{\pi}_{\mathrm{k}}[\mathrm{i}(\mathrm{a})]=\overline{\mathrm{i}}\left[\pi_{\mathrm{k}}(\mathrm{a})\right]$. Since A is fully invariant, then $\bar{\pi}_{\mathrm{k}}(\mathrm{a})={ }^{-} \pi_{\mathrm{k}}[\mathrm{i}(\mathrm{a})]=\overline{\mathrm{i}}\left[\pi_{\mathrm{k}}(\mathrm{a})\right]=\pi_{\mathrm{k}}(\mathrm{a})=\mathrm{b}_{\mathrm{k}} \in \mathrm{A} \cap \mathrm{B}_{\mathrm{k}}$ for each k whence $\mathrm{a} \in \oplus_{\mathrm{i}}\left(\mathrm{A} \cap \mathrm{B}_{\mathrm{i}}\right)$.

Proposition 1.1.22 [15] : Every summand of a P.Q.-injective module is a gain P.Q.-injective module

Proof : Let $\mathrm{M}=\mathrm{A} \oplus \mathrm{B}$ be a P.Q.-injective module and let X be a principal submodule of A, with f a homomorphism of X into A, let i_{x} and
i_{A} be the inclusion maps of X in A and A in M respectively and π_{A} : $\mathrm{M} \rightarrow \mathrm{A}$ be the projection map .Consider the following diagram.

Since M is P.Q8.-injective module, then there exists a homomorphism $\mathrm{g}: \mathrm{M} \rightarrow \mathrm{M}$ such that $\mathrm{goi}_{\mathrm{A}} \mathrm{Oi}_{\mathrm{x}}=\mathrm{i}_{\mathrm{A}}$ of.
Define $\bar{g}=\pi_{A o} g_{o} i_{A}$, then \bar{g} is a homomorphism of A into A. Note that \bar{g} extends f , that is $\left(\overline{\mathrm{g}}_{\mathrm{o}} \mathrm{i}_{\mathrm{x}}\right)_{(\mathrm{x})}=\overline{\mathrm{g}}\left[\mathrm{i}_{\mathrm{x}}(\mathrm{x})\right]=\overline{\mathrm{g}}(\mathrm{x})=\mathrm{g}(\mathrm{x})=\left(\mathrm{i}_{\mathrm{A} 0} \mathrm{f}\right)_{(\mathrm{x})}=\mathrm{f}(\mathrm{x})$.

Section 1.2 The Jacobson Radical and Related Concepts

Recall that the intersection of all maximal submodules of M_{R} is called the Jacobson radical of M it is denoted by $\mathrm{J}(\mathrm{M})$. If M has no maximal submodule, then we put $\mathrm{J}(\mathrm{M})=\mathbf{M}[10, \mathrm{p} .213]$.

For $S=$ end $\left(M_{R}\right)$, we define $J(S)$ to be the Jacobson radical of the 8S2-module. Recall that an R-module M is called singular module if $Z(M)=0$ where $Z(M)=\{x \in M \backslash a n n(x) \leq R\}$ and non-singular if $Z(M)=M$ [9]. More over recall that $\mathrm{W}(\mathrm{S})=\{\mathrm{w} \in \operatorname{S} \backslash \operatorname{ker}(\mathrm{w}) \leq \mathrm{M}\}$ where $\mathrm{S}=\operatorname{end}\left(\mathrm{M}_{\mathrm{R}}\right)$ [15]. In this section we study the relation between $J(M), Z(M)$ and $W(S)$.

Examples 1.2.1:

(1) $\mathrm{J}\left(\mathrm{Z}_{4}\right)=\{\overline{0}, \overline{2}\}$, but $\mathrm{J}\left(\mathrm{Z}_{6}\right)=0$.
(2) Q as a Z -module is singluar module, i.e., ifo $\neq \mathrm{x} \in \mathrm{Q}, \operatorname{ann}(\mathrm{x}) \underset{\mathrm{e}}{\ddagger} \mathrm{Z}$, then $\mathrm{Z}(\mathrm{Q})=0$, on the other hand Z_{n} as a Z -module is non-singular module, i.e., $Z\left(Z_{n}\right)=Z_{n}$.

Lemma 1.2.2 [12,p.38]: Let M be an R-module with $S=e n d\left(M_{R}\right)$. Then $W(S)=\{w \in S \backslash \operatorname{ker}(w) \leq M\}$ is a two sided ideal in S.

Proof: Let $\mathrm{a}, \mathrm{b} \in \mathrm{W}(\mathrm{S})$ and $\alpha \in \mathrm{S}$. Then kera $\leq \mathrm{C}$ and kerb $\leq \mathrm{M}$. Since ker $\mathrm{a} \cap$ ker $\mathrm{b} \leq \operatorname{ker}(\mathrm{a}-\mathrm{b})$ and ker $\mathrm{a} \leq \operatorname{ker} \alpha \mathrm{a}$, ker (a-b) and ker $\alpha \mathrm{a}$ are essential submodules of M and consequently, $\mathrm{a}-\mathrm{b} \in \mathrm{W}(\mathrm{S})$ and $\alpha \mathrm{a} \in \mathrm{W}(\mathrm{S})$. Let $\mathrm{N}=\{\mathrm{n} \in \mathrm{M} \backslash \alpha(\mathrm{n}) \in$ ker a$\}$. Then it is clear that $\mathrm{N} \leq \mathrm{M}$ and $\mathrm{N} \leq$ ker a α. Hence $a \alpha \in W(S)$.

Remark 1.2.3: If $\mathrm{w} \in \mathrm{W}(\mathrm{S})$, then $\operatorname{ker}(\mathrm{w}) \cap$ ker $(1-\beta \mathrm{w})=0$, for all $\beta \in \mathrm{S}$.

Proof : Let $x \in \operatorname{ker}(w)$ and $x \in \operatorname{ker}(1-\beta w)$ then $w(x)=0$ and $(1-\beta w)_{(x)}=0$, hence $x=0$.

Remark 1.2.4[15]: $\mathrm{W}(\mathrm{S}) \subseteq\{\mathrm{w} \in \mathrm{S} \backslash 1-\beta \mathrm{w}$ is monomorphism for all $\beta \in S\}$.

Proof : Since $\mathrm{w} \in \mathrm{W}(\mathrm{S})$, then $\operatorname{ker}(\mathrm{w}) \cap \operatorname{ker}(1-\beta \mathrm{w})=0$ and ker $\mathrm{w} \leq \mathrm{M}$, so by definition (1.1.15).Ker $(1-\beta \mathrm{w})=0$. Therefore $1-\beta \mathrm{w}$ is monomorphism. Thus $\mathrm{W}(\mathrm{S}) \subseteq\{\mathrm{w} \in \mathrm{S} \backslash 1-\beta \mathrm{w}$ is monomorphism for all $\beta \in \mathrm{S}\}$.

The following proposition shows that equality in (1.2.4) holds for P.Q.-injective module.

Proposition 1.2.5 [15]: If M_{R} is a P.Q.-injective module then $W(S)=$ $\{\mathrm{w} \in \mathrm{S} \backslash 1-\beta \mathrm{w}$ is monomorphism for all $\beta \in \mathrm{S}\}$.

Proof: Assume that $1-\beta \mathrm{w}$ is monomorphism for all $\beta \in \mathrm{S}$, and let ker (w) $\cap m R=0, m \in M$. then $a n n_{R}(w m) \subseteq \operatorname{ann}_{R}(m)$, in fact, let $r \in \operatorname{ann}_{R}(w m)$, then $\mathrm{w}(\mathrm{mr})=\mathrm{w}(\mathrm{m}) \mathrm{r}=0$. Hence $\mathrm{mr} \in \operatorname{ker}(\mathrm{w}) \cap \mathrm{mR}=0$. Thus $\mathrm{mr}=0$, so $\mathrm{r} \in \operatorname{ann}_{\mathrm{R}}(\mathrm{m})$. By theorem (1.1.9(3)) $\mathrm{m} \in \mathrm{Swm}$. i.e., $\mathrm{m}=\beta(\mathrm{wm})=\mathrm{m}-\beta \mathrm{wm}=(1-\beta \mathrm{w})(\mathrm{m})=0$. This means that $m \in \operatorname{ker}(1-\beta \mathrm{w})$ for some $\beta \in \mathrm{S}$, but $(1-\beta \mathrm{w})$ is monomorphism, so $\mathrm{m}=0$. This proves that $\mathrm{w} \in \mathrm{W}(\mathrm{S})$. The other inclusion follows from the last remark.

Before the next lemma we need this definition.

Definition 1.2.6 [15]: The module M_{R} is called a kasch module if every simple subquotient of M embeds in M .

For example, let $\mathrm{M}=\mathrm{Z}_{6}=\mathrm{Z}_{2} \oplus \mathrm{Z}_{3}$. Since $\mathrm{Z}_{6} / \mathrm{Z}_{2} \cong \mathrm{Z}_{3}$, then Z_{3} embeds in Z_{6}, i.e., there exists a monomorphism $f: Z_{3} \rightarrow M$, similary for Z_{6} / Z_{3}. But Z as a Z-module is not kasch module.

For example $\mathrm{Z} / 2 \mathrm{Z} \cong \mathrm{Z}_{2}$ does not embeded in Z .
We need the following lemma to prove the next theorem.

Lemma 1.2.7 [15]: Let M_{R} be a P.Q.-injective module which is a kasch module. If T is maximal ideal of R (it is denoted by $T \subset{ }^{\max } R$), then $\operatorname{ann}_{M}(T) \neq 0$ if and only if $\operatorname{ann}_{R}(\mathrm{~m}) \subseteq \mathrm{T}$ for some $0 \neq \mathrm{m} \in \mathrm{M}$. In this case $\operatorname{ann}_{M}(\mathrm{~T})$ is a simple left S-module.

Proof : If $0 \neq m \in \operatorname{ann}_{M}(T)$, then $m T=0$, hence $T \subseteq \operatorname{ann}_{R}(m) \neq R$, so $\mathrm{T}=\mathrm{ann}_{\mathrm{R}}(\mathrm{m})$ by the maximality of T , which implies $\operatorname{ann}_{R}(\mathrm{~m}) \subseteq \mathrm{T}$. Conversely, assume $\operatorname{ann}_{R}(\mathrm{~m}) \subseteq \mathrm{T}$ where $0 \neq \mathrm{m} \in \mathrm{M}$, observe first that $\mathrm{mR} \neq \mathrm{mT}$, in fact, if $\mathrm{m} . \mathrm{l}=\mathrm{mt}$ where $\mathrm{t} \in \mathrm{T}$, then $\mathrm{m}(1-\mathrm{t})=0$, hence $1-\mathrm{t} \in \mathrm{ann}_{\mathrm{R}}(\mathrm{m}) \subseteq \mathrm{T}$, implies that $1-\mathrm{t}+\mathrm{t} \in \mathrm{T}$, so $1 \in \mathrm{~T}$ contradiction with maximality of T . Hence choose $\frac{x}{m T} \subset^{\max } \frac{m R}{m T}$. As M is kasch. Let 6: $\frac{m R}{x} \rightarrow M_{R}$ be a monomorphism and write $\mathrm{m}_{0}=6(\mathrm{~m}+\mathrm{x})$. Then $0 \neq \mathrm{m}_{0} \in \operatorname{ann}_{\mathrm{M}}(\mathrm{T})$, implies that $\mathrm{m}_{\mathrm{o}} \mathrm{T}=6(\mathrm{~m}+\mathrm{x}) \mathrm{T}=6(\mathrm{mT}+\mathrm{x})=6(0+\mathrm{x})=6(\mathrm{x})=0$. Finally, let $0 \neq \mathrm{m}_{1} \in \operatorname{ann}_{M}(\mathrm{~T})$, then $\mathrm{m}_{1} \mathrm{~T}=0$, hence $\mathrm{T} \subseteq \operatorname{ann}_{R}\left(\mathrm{~m}_{1}\right)$ whence $\mathrm{T}=\mathrm{ann}_{\mathrm{R}}\left(\mathrm{m}_{1}\right)$. Thus $\operatorname{ann}_{M}(\mathrm{~T})=\operatorname{ann}_{\mathrm{M}} \mathrm{ann}_{\mathrm{R}}\left(\mathrm{m}_{1}\right)=\operatorname{Sm}_{1}$ by theorem (1.1.9(2)).

Hence $\operatorname{ann}_{M}(T)$ is simple as a left S-module, that proves the lemma

Theorem 1.2.8 [15]: Let M_{R} be a P.Q.-injective module which is a kasch module with $\mathrm{S}=\mathrm{end}\left(\mathrm{M}_{\mathrm{R}}\right)$. Then
(1) $\operatorname{Soc}\left(\mathrm{M}_{\mathrm{R}}\right)=\operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right) \subseteq \operatorname{ann}_{\mathrm{M}}(\mathrm{J}(\mathrm{S}))$.
(2) $\operatorname{Soc}\left(S^{\mathrm{M}}\right) \subseteq{ }^{\mathrm{ess}} S^{\mathrm{M}}$.

Proof : By proposition (1.1.19(2) we have $\operatorname{Soc}\left(\mathrm{M}_{\mathrm{R}}\right) \subseteq \operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right)$ we show $\operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right) \subseteq \operatorname{ann}_{\mathrm{M}}(\mathrm{J})$, in fact, let s^{N} be a simple submodule of the S -module M. Since every simple submodule is cyclic, then Ns is cyclic, in particular, Ns is finitely generated. Since every finitely generated module has maximal submodule [10,p.28] , but Ns is simple, then either $\mathrm{JNs}=\mathrm{Ns}$ contradiction with maximality or $\mathrm{JNs}=\{0\}$, then $\mathrm{JNs}=0$. Hence $\mathrm{Ns} \in \operatorname{ann}_{\mathrm{M}}(\mathrm{J})$. Now let $0 \neq \mathrm{m} \in \mathrm{M}$, if $\quad \mathrm{ann}_{\mathrm{R}}(\mathrm{m}) \subseteq \mathrm{T} \subset{ }^{\max } R$, then $\operatorname{ann}_{M}(T) \subseteq \operatorname{ann}_{M} \operatorname{ann}_{R}(m)$, in fact, let $x \in \operatorname{ann}_{M}(T)$, then $x T=0$ where $x \in M$, we want to show that $x \in a \mathrm{an}_{\mathrm{M}} \mathrm{ann}_{\mathrm{R}}(\mathrm{m})$, i.e., $\mathrm{xr}=0$ where $\mathrm{rm}=0$. Since $T \subseteq \operatorname{ann}_{R}(m)$, then $t m=0$. Hence $x r=0$, implies that $x \in a n_{M} a n n_{R}(m)$. Thus by theorem (1.1.9(2)) ann $n_{M}(T) \subseteq \operatorname{ann}_{M} a$ ann $_{R}(m)=S m$. As ann $n_{M}(T)$ is simple by lemma (1.2.7), this shows that $\operatorname{Soc}\left(S^{\mathrm{M}}\right) \simeq^{\text {ess }} S^{\mathrm{M}}$. This proves (2). Finally to show that $\operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right) \subseteq \operatorname{Soc}(\mathrm{M})$, let Sm be a simple module and let $\operatorname{ann}_{\mathrm{R}}(\mathrm{m}) \subseteq \mathrm{T} \subset^{\max } R$. Since $\operatorname{ann}_{M}(T) \neq 0$ by lemma (1.2.7), then $\operatorname{ann}_{M}(T) \subseteq \operatorname{ann}_{M} \operatorname{ann}_{R}(m)=S m$, but $S m$ is simple, then $S m=\operatorname{ann}_{M}(T)$. Thus $T \subseteq \operatorname{ann}_{R} a \mathrm{an}_{\mathrm{M}}(\mathrm{T})=\operatorname{ann}_{\mathrm{R}}(\mathrm{Sm})=\mathrm{ann}_{\mathrm{R}}(\mathrm{m}) \neq \mathrm{R}$, it is clear that $\mathrm{R} / \mathrm{ann}_{\mathrm{R}}(\mathrm{m})$ $\cong m R$. Since T is maximal, $\operatorname{ann}_{R}(m)=T$ whence $m R=R / T$ is simple. It follows that $\operatorname{Soc}\left(\mathrm{S}^{\mathrm{M}}\right) \subseteq \operatorname{Soc}\left(\mathrm{M}_{\mathrm{R}}\right)$.

Proposition 1.2.9 [15] : Let M_{R} be a P.Q.-injective module with $S=\operatorname{end}\left(M_{R}\right)$. Then
(1) $\mathrm{Z}(\mathrm{Ss}) \subseteq \mathrm{W}(\mathrm{S})$ and $\mathrm{J}(\mathrm{S}) \subseteq \mathrm{W}(\mathrm{S})$.
(2) If every monomorphism in S has a left inverse then $\mathrm{W}(\mathrm{S}) \subseteq \mathrm{J}(\mathrm{S})$.

Proof:

(1) Suppose $\alpha \in W(S)-Z(S s)$, then $\operatorname{ker}(\alpha) \underset{e}{\triangle M_{R}}$, thus $\operatorname{ker}(\alpha) \cap m R=0$ where $0 \neq \mathrm{m} \in \mathrm{M}$. Hence $\left.\alpha\right|_{\mathrm{mR}}: \mathrm{mR} \rightarrow \mathrm{M}$ is monomorphism, then by theorem (1.1.9(4)) there exists $\beta: \mathrm{M} \rightarrow \mathrm{M}$ such that $(\beta \circ \alpha)=1_{\mathrm{mR}}$ which implies (1$\beta \alpha)_{(\mathrm{m})}=0$. Thus $\mathrm{m} \in \operatorname{ker}(1-\beta \alpha)$, hence $\operatorname{ker}(1-\beta \alpha) \neq 0$ contradicting proposition (1.2.5). Hence $\mathrm{Z}(\mathrm{Ss}) \subseteq \mathrm{W}(\mathrm{S})$

(2) $\forall \mathrm{w} \in \mathrm{W}(\mathrm{S})$, $\operatorname{ker}(\mathrm{w}) \cap \operatorname{ker}(1-\beta \mathrm{w})=0$ for all $\beta \in \mathrm{S}$ by remark (1.2.3), thus if $\operatorname{ker}(1-\beta \mathrm{w})=0$, then $1-\beta \mathrm{w}$ is monomorphism. Thus by hypothesis, $1-\beta \mathrm{w}$ has a left inverse, so by $[\mathbf{1 0}, \mathbf{p . 2 2 0}], \mathrm{w} \in \mathrm{J}(S)$. Hence $\mathrm{W}(\mathrm{S}) \subseteq \mathrm{J}(S)$.

Theorem 1.2.10 [14]: If R is P-injective ring, then $J(R)=Z\left(R_{R}\right)$

Proof : If a $\in Z(R)$, then $\operatorname{ann}(a) \leq R$. More over, it is easily seen that $\operatorname{ann}(1-a)=0$. Hence by corollary (1.1.12(2)) $R=a n n$ ann (1-a) $=R(1-a)$ and thus $R=R(1-a)$ which shows that $Z\left(R_{R}\right) \subseteq J(R)$. Conversely, if $a \in J(R)$ we show that $b R \cap a n n(a)=0$ where $b \in R$, implies that $b=0$. But by corollary (1.1.12(4)) $\operatorname{ann}_{R}(b)+R a=\operatorname{ann}_{R}[b R \cap a n n(a)]=R$, so ann $(b)=R$.

Proposition 1.2.11[15]: Let M_{R} be a P.Q.-injective module with $S=e n d\left(M_{R}\right)$. If M is non-singular, then $w(S)=J(S)=0$.

Proof : By proposition (1.2.9) $\mathrm{J}(\mathrm{S}) \subseteq \mathrm{W}(\mathrm{S})$, thus it is enough to show that $\mathrm{W}(S)=0$. If $w \in W(S)$, then $\operatorname{ker}(w) \leq \mathrm{M}_{\mathrm{R}}$. Since M is non-singular, then
by [9] M has no proper essential submodule, which implies that $\operatorname{ker}(\mathrm{w})=\mathrm{M}_{\mathrm{R}}$ and $\mathrm{w}=0$.

Definition 1.2.12 [15] : A module M_{R} is said to satisfy the C_{2}-condition, if every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M , i.e., $\mathrm{N} \leq \mathrm{M}$, $\mathrm{N} \cong K$ where $\mathrm{M}=\mathrm{K} \oplus \mathrm{J}$ and $\mathrm{J} \leq \mathrm{M}$, then $\mathrm{M}=\mathrm{N} \oplus \mathrm{L}$ where $\mathrm{L} \leq \mathrm{M}$.

Recall that an R-homomorphism $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ (where A and B are two R -modules) is said to split if there exists an R -homomorphism $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ such that $\mathrm{g} \circ \mathrm{f}=\mathrm{l}_{\mathrm{A}}[\mathbf{1 0}, \mathbf{p . 1 1 5]}$.

Now we show that there exists a relation between the C_{2}-condition and cyclic P.Q.-injective modules.

Proposition 1.2.13 [15]: Let M_{R} be a P.Q.-injective module with S=end $\left(\mathrm{M}_{\mathrm{R}}\right)$.
(1) If N and K are isomorphic cyclic submodules of M and K is a direct summand, then N is also a direct summand.
(2) Every cyclic P.Q.-injective module satisfies the C_{2}-condition.

Proof: Since a direct summand of a cyclic module is cyclic, it is enough to prove (1), now let $\sigma: \mathrm{N} \rightarrow \mathrm{K}$ be an isomorphism and $\pi: \mathrm{M} \rightarrow \mathrm{K}$ be the projection. If $\quad \bar{\sigma}: M \rightarrow M$ is an extension of σ, put $\alpha=\sigma^{-1}{ }_{o} \pi_{o} \bar{\sigma}: M \rightarrow N$.

Thus $\quad \sigma(\mathrm{n})=\mathrm{k} \in \mathrm{K}$, so $\quad \alpha(\mathrm{n})=\sigma^{-1}\left[\pi(\bar{\sigma}(\mathrm{n})]=\sigma^{-1}[\pi(\bar{\sigma}(\mathrm{i}(\mathrm{n})))]=\right.$ $\sigma^{-1}[\pi(\sigma(\overline{\mathrm{i}}(\mathrm{n})))]=\sigma^{-1}[\pi(\sigma(\mathrm{n}))]=\sigma^{-1}[\pi(\mathrm{k})]=\sigma^{-1}(\mathrm{k})=\sigma^{-1}[\sigma(\mathrm{n})]=\left(\sigma^{-1}{ }_{\mathrm{o}} \sigma\right)_{(\mathrm{n})}=\mathrm{n}$. Hence the inclusion map $\mathrm{N} \rightarrow \mathrm{M}$ splits, i.e., $\alpha_{0} \mathrm{i}=1_{\mathrm{N}}$

This means, the sequence is split. Hence by [10, p.116] N is isomorphic to a direct summand of M . This proves (1).

The following lemma appeared in [19, 41.22].

Lemma 1.2.14: Let M_{R} be any module with $S=e n d\left(M_{R}\right)$. If M has C_{2}-condition, then $\mathrm{W}(\mathrm{S}) \subseteq \mathrm{J}(\mathrm{S})$.

The following proposition is known for quasi-injective modules.

Proposition 1.2.15 [15]: If M_{R} is a cyclic P.Q.-injective module, then $J(S)=W(S)$.

Proof : Since M is P.Q.-injective module, then by proposition (1.2.9(1)) $\mathrm{J}(\mathrm{S}) \subseteq \mathrm{W}(\mathrm{S})$. Since M is cyclic P.Q.-injective module , then by proposition (1.2.13(2)) and lemma (1.2.14) $\mathrm{W}(S) \subseteq J(S)$. Hence $\mathrm{W}(S)=\mathrm{J}(S)$.

Proposition 1.2.16 [15]: Let M_{R} be a principally self-generator with $S=\operatorname{end}\left(M_{R}\right)$. Then $Z(S s)=W(S)$.

Proof : Let $\mathrm{w} \in \mathrm{W}(\mathrm{S})$. Given $0 \neq \beta \in \mathrm{S}$ we have ker $(\mathrm{w}) \cap \beta(\mathrm{M}) \neq 0$, thus there exists $0 \neq \beta\left(\mathrm{m}_{\mathrm{o}}\right) \in \operatorname{ker}(\mathrm{w})$, i.e., $\mathrm{w}\left[\beta\left(\mathrm{m}_{\mathrm{o}}\right)\right]=0$. Since M is principally self-generator, then $\mathrm{m}_{0}=\lambda\left(\mathrm{m}_{1}\right)$ where $\lambda: \mathrm{M} \rightarrow \mathrm{m}_{0} \mathrm{R}$, so $\beta\left(\mathrm{m}_{0}\right)=\beta\left[\lambda\left(\mathrm{m}_{1}\right)\right]$. This means $\beta \lambda \neq 0$, but $\mathrm{w} \beta \lambda=0$ because $\mathrm{w} \beta \lambda(\mathrm{M}) \subseteq \mathrm{w} \beta\left(\mathrm{m}_{0} \mathrm{R}\right)=\mathrm{w} \beta\left(\mathrm{m}_{\mathrm{o}}\right) \mathrm{R}$
$=0$, hence $0 \neq \beta \lambda \in \operatorname{ann}_{S}(\mathrm{w}) \cap \beta \mathrm{S}$, proving that $\mathrm{w} \in \mathrm{Z}(\mathrm{Ss})$. Conversely, if $w \in Z(S s)$ and $0 \neq m_{0} \in M$, we must show that ker $(w) \cap m_{0} R \neq 0$. Since M is principally self-generator, then there exists $\lambda: M \rightarrow m_{0} R \rightarrow 0$. Then $\lambda \neq 0$, so $\operatorname{ann}_{S}(w) \cap \lambda S \neq 0$.

Put $w \lambda \beta=0$, i.e., $\lambda \beta \in \operatorname{ann}_{S}(\mathrm{w}) \cap \lambda \mathrm{S}$ for some $\beta \in \mathrm{S}$ where $\lambda \beta \neq 0$, let $\lambda \beta\left(\mathrm{m}_{1}\right) \neq 0$ where $\mathrm{m}_{1} \in \mathrm{M}$, we have $\lambda \beta\left(\mathrm{m}_{1}\right) \in \lambda(\mathrm{M})=\mathrm{m}_{0} \mathrm{R}$, so write $\lambda \beta\left(\mathrm{m}_{1}\right)=\mathrm{m}_{\mathrm{o}} \mathrm{a} \quad \forall \mathrm{a} \in \mathrm{R}$. Then $\mathrm{w}\left(\mathrm{m}_{0} \mathrm{a}\right)=\mathrm{w}\left[\lambda \beta\left(\mathrm{m}_{1}\right)\right]=0$, so $\mathrm{w}\left(\mathrm{m}_{0} \mathrm{a}\right)=0$, hence $0 \neq m_{0} \mathrm{a} \in \operatorname{ker}(\mathrm{w}) \cap \mathrm{m}_{0} \mathrm{R}$. This shows that $\mathrm{w} \in \mathrm{W}(\mathrm{S})$.

Proposition 1.2.17: Let M_{R} be a P.Q.-injective module. If M is cyclic, then $\mathrm{Z}(\mathrm{Ss}) \subseteq \mathrm{J}(\mathrm{Ss})$.

Proof : Since M is P.Q.-injective module, then by proposition (1.2.9(1)) $\mathrm{Z}(\mathrm{Ss}) \subseteq \mathrm{W}(\mathrm{S})$. More over by proposition(1.2.13(2)) M has C_{2}-condition, so by lemma $(1.2 .14) \mathrm{W}(\mathrm{S}) \subseteq \mathrm{J}(\mathrm{S})$. Hence $\mathrm{Z}(\mathrm{Ss}) \subseteq \mathrm{J}(\mathrm{Ss})$.

Section 1.3 Further Results On Principally Injective Rings

In this section we give further results on principally injective rings. For reference see [14].

Recall that the ring R is principally injective if it is principally injective as an R-module.

Example 1.3.1 [7]: Let R be the ring generated over the field Z_{2} by variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$ where $x_{i}^{3}=0$ and $x_{i}^{2}=x_{j}^{2}$ for all i, j. Then R is commutative, principally injective, but not injective.

A statemenet similar to the following statement is known for pointwise injective modules [3], we prove it for P-injective rings.

Proposition 1.3.2 : Let R be a ring in which every cyclic R -module is P -injective, then R is regular ring.

Proof : For any $b \in R$, consider the following diagram.

Where $\mathrm{I}: \mathrm{bR} \rightarrow \mathrm{bR}$ is the identity R -homomorphism and $\mathrm{i}: \mathrm{bR} \rightarrow \mathrm{R}$ the inclusion map. Since $b R$ is P-injective, then there exists $g: R \rightarrow b R$ such that $\mathrm{I}(\mathrm{b})=\left(\mathrm{g}_{\mathrm{o}} \mathrm{i}\right)(\mathrm{b})$, hence $\mathrm{b}=\mathrm{I}(\mathrm{b})=\left(\mathrm{g}_{\mathrm{o}} \mathrm{i}\right) \quad(\mathrm{b})=\mathrm{g}(\mathrm{b})=\mathrm{g}(1) \mathrm{b}$. Since $g(1) \in b R$, then $g(1)=b a$ for some $a \in R$. which shows that $b=b a b$. Therefore R is regular ring.

The next result shows that the C_{2}-condition and C_{3}-condition [14] hold in a P-injective rings. Where a module M is said to satisfy the
C_{3}-condition, if whenever N and K are direct summands with $\mathrm{N} \cap \mathrm{K}=0$, then $\mathrm{N}+\mathrm{K}$ is also a direct summand [15] .

Theorem 1.3.3 [14]: Let R be a P-injective ring and let $a, b \in R$.
(1) If $a R \cong b R$ and $b R$ is a direct summand of R, then $a R$ is a direct summand of R.
(2) If each of $a R$ and $b R$ is a direct summand of R and $a R \cap b R=0$, then $(a R \oplus b R)$ is a direct summand of R.

Proof:

(1) This follows from proposition (1.2.13(1)).
(2) Since $a R$ is a direct summand of R, then $a R=e R$ with $e^{2}=e$, so that $a R \oplus b R=e R \oplus(1-e) b R$. Hence (1-e)bR $\cong b R$, so by (1) (1-e)bR=gR where $\mathrm{g}^{2}=\mathrm{g}$. Since R is commutative, then $\mathrm{eg}=0$, so $\mathrm{h}=\mathrm{e}+\mathrm{g}$-ge is an idempotent element, in fact, $h^{2}=(e+g-g e)^{2}=(e+g-g e)(e+g-g e)=e^{2}+e g-g e^{2}+$ $g e+g^{2}-g^{2} e-g e^{2}-g^{2} e+g^{2} e^{2}=e+e g-g e+g e+g-g e-g e+g e+g e=e$ $+g$ - ge. Hence $a R \oplus b R=h R$.

Before the next result we give some definitions.
Definition 1.3.4 [10,p.124]: Let M be an R-module, a monomorphism $\sigma: M \rightarrow E$ is called an injective hull of M if E is injective and σ is essential monomorphism, i.e., $\sigma(\mathrm{M}) \leq \mathrm{E}$.

For example, Q_{Z} is an injective hull of Z_{Z}.
Remark 1.3.5 : Let M be an R -module, then every module has an injective hull [10, p.127]

Note 1.3.6: We use the notation $\mathrm{I}(\mathrm{M})$ for injective hull of M .

Definition 1.3.7 [14]: An R-module M is called weakly injective if for every finitely generated submodule $\mathrm{N} \subseteq \mathrm{I}(\mathrm{M}), \mathrm{N} \subseteq \mathrm{X} \subseteq \mathrm{I}(\mathrm{M})$ for some $\mathrm{X} \cong \mathrm{M}$.

Remark 1.3.8 : Every injective module is weakly injective module, but the converse is not true .

For example, the Z -module Z_{2} is not weakly injective, in fact, $\mathrm{I}\left(\mathrm{Z}_{2}\right)=\mathrm{Z}_{2}{ }^{\infty}$ and $\mathrm{Z}_{4} \subseteq \mathrm{Z}_{2}{ }^{\infty}$, but $\mathrm{Z}_{4} \cong \mathrm{Z}_{2}$. However, the Z -module Z is weakly injective but not injective. In fact, $\mathrm{I}(\mathrm{Z})=\mathrm{Q}$, and every finitely generated Z-submodule of Q has the form $\frac{Z}{b}=\left\{\frac{n}{b} \backslash n \in Z, b \neq 0\right\}$, clearly $\frac{Z}{b} \cong Z$ and $\frac{Z}{b} \subseteq \frac{Z}{b} \subseteq Q$.

Theorem 1.3.9 [14]: R is self-injective if and only if R is P-injective and weakly injective.

Proof : The conditions are clearly necessary. For the converse, if $a \in I(R)$ we show that $a \in R$. we have $R+a R \subseteq X \subseteq I(R)$ with $X \cong R$. Hence X has the C_{2}-condition (property(1) Theorem (1.3.3), so R is a direct summand of X. But R is essential in $I(R)$, so $R=X$ as required.

Definition 1.3.10 [10,p.52]:

(1) An R-module B is called a generator of an R-module M if $\mathrm{M}=\Sigma \operatorname{Im}(\varphi)$ where $\varphi \in \operatorname{Hom}(\mathrm{B}, \mathrm{M})$.
(2) An R-module C is called a cogenerator of an R-module M if $0=\cap$ ker φ where $\varphi \in \operatorname{Hom}(M, C)$.

Recall that an R-module M is called a duo module if every submodule of M is fully invariant [21] .

Theorem 1.3.11 [14]: Let M be a duo R-module with $S=\operatorname{end}\left(M_{R}\right)$, let β, γ denote elements of S .
(1) Assume that M generator $\operatorname{ker} \beta$ for each $\beta \in \mathrm{S}$. Then S is P -injective if and only if $\operatorname{ker} \beta \subseteq \operatorname{ker} \gamma$ implies that $\gamma \in \mathrm{S} \beta$.
(2) Assume that M cogenerates $M / \beta M$ for each $\beta \in S$. Then S is P-injective if and only if $\gamma \mathrm{M} \subseteq \beta \mathrm{M}$, implies that $\gamma \in \beta \mathrm{S}$.

Proof $(\mathbf{1}) \Rightarrow$) Since M is duo module, then it is easily seen that S is commutative. S is P -injective, then by proposition (1.1.11) if $\operatorname{ker} \beta \subseteq$ ker γ, then $\gamma \in \beta$ S, this condition holds for any M .
$\Leftarrow)$ if $\gamma \in \operatorname{ann}_{s} a n n_{S}(\beta)$, i.e., $\gamma\left[\operatorname{ann}_{S}(\beta)\right]=0$, we show that $\operatorname{ker} \beta \subseteq$ ker γ. Let $\mathrm{x} \in \operatorname{ker} \beta$, since M generates $\operatorname{ker} \beta$, then $\mathrm{x}=\Sigma_{\mathrm{i}} \lambda_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{i}}\right)$ where $\lambda_{\mathrm{i}}: \mathrm{M} \rightarrow \operatorname{ker} \beta$, hence $\beta(\mathrm{x})=\beta\left(\lambda_{\mathrm{i}}\right)=0$ for each i , which implies $\lambda_{\mathrm{i}} \in \operatorname{ann}_{\mathrm{s}}(\beta)$. Thus $\gamma \lambda_{\mathrm{i}}=0$, it follows that $\mathrm{x} \in$ ker γ. Hence by proposition (1.1.11) S is P -injective.
$(\mathbf{2}) \Rightarrow$) Again, the forward implication always holds.
\Leftarrow If $\gamma \in \operatorname{ann}_{\mathrm{s}} \mathrm{ann}_{\mathrm{S}}(\beta)$, then $\gamma \alpha=0$, where $\alpha \in \operatorname{ann}_{\mathrm{S}}(\beta)$, so $\alpha \beta=0$, hence $\gamma \beta=0$, we want to show that $\gamma \mathrm{M} \subseteq \beta \mathrm{M}$, assume not, then there exists $\mathrm{m}_{0} \in \mathrm{M}$ such that $\gamma\left(\mathrm{m}_{0}\right) \notin \beta \mathrm{M}$. Since M cogenerates $\mathrm{M} / \beta \mathrm{M}$, then there exists $\sigma: \mathrm{M} / \beta \mathrm{M} \rightarrow \mathrm{M}$ satisfies $\sigma\left[\gamma\left(\mathrm{m}_{\mathrm{o}}\right)+\beta(\mathrm{M})\right] \neq 0$. If $\lambda: \mathrm{M} \rightarrow \mathrm{M}$ is defined by $\lambda(\mathrm{m})=\sigma[\mathrm{m}+\beta(\mathrm{M})]$, then $\lambda\left[\gamma\left(\mathrm{m}_{\mathrm{o}}\right)\right]=\sigma\left[\gamma\left(\mathrm{m}_{\mathrm{o}}\right)+\beta(\mathrm{M})\right] \neq 0$, hence $\lambda \gamma \neq 0$, so $\lambda[\beta(\mathrm{m})]=\sigma[\beta(\mathrm{m})+\beta(\mathrm{M})]$, but $\beta(\mathrm{m}) \in \beta(\mathrm{M})$. Thus $\lambda \beta(\mathrm{m})=\sigma[\beta(\mathrm{M})]=0$, therefore $\lambda \beta=0$ a contradiction. Hence $\gamma \mathrm{M} \subseteq \beta \mathrm{M}$, which implies that $\gamma \in \beta \mathrm{S}$. Then by proposition (1.1.11)S is P -injective.

Befor giving the next lemma we give this definition.
Definition 1.3.12 [10,p.147]: An asending chain of submodules of the form $\mathrm{N}_{1} \subseteq \mathrm{~N}_{2} \subseteq \ldots \subseteq \mathrm{~N}_{\mathrm{n}} \subseteq \ldots$ is said to satisfy the asending chain condition if there exists $n \in N$ such that $N_{n}=N_{n+1}=\ldots$.

Remark 1.3.13 : We use the notation A.C.C. for asending chain condition.

We need the following lemma.

Lemma 1.3.14 [14]: Let R be a ring and let I be an ideal of R such that R/I satisfies the A.C.C. on annihilators. If $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots$ are subsets of ann (I), then there exists $\mathrm{n} \geq 1$ such that ann $\left(\mathrm{y}_{\mathrm{n}+1} \ldots \mathrm{y}_{1}\right)=$ ann $\left(\mathrm{y}_{\mathrm{n}} \ldots \mathrm{y}_{1}\right)$ where y_{i} y_{j} is the set theortic product of $y_{i} y_{j}$.
Proof: Write $\overline{\mathrm{R}}=\mathrm{R} / \mathrm{I}$ and $\mathrm{r} \rightarrow \overline{\mathrm{r}}$ denote the natural homomorphism $\mathrm{R} \rightarrow \overline{\mathrm{R}}$. Then ann $\left(\overline{\mathrm{y}}_{1}\right) \subseteq \operatorname{ann}\left(\overline{\mathrm{y}}_{2} \overline{\mathrm{y}}_{1}\right) \subseteq \operatorname{ann}\left(\overline{\mathrm{y}}_{3} \overline{\mathrm{y}}_{2} \overline{\mathrm{y}}_{1}\right) \subseteq \ldots$. Since $\overline{\mathrm{R}}=\mathrm{R} / \mathrm{I}$ satisfies A.C.C. on annihiliators, then ann ($\left.\overline{\mathrm{y}}_{\mathrm{n}+1} \overline{\mathrm{y}}_{\mathrm{n}} \ldots \overline{\mathrm{y}}_{1}\right)$ $=\operatorname{ann}\left(\bar{y}_{n} \ldots \bar{y}_{1}\right)$ for some $n \geq 1$. Now if $a \in \operatorname{ann}\left(y_{n+1} \ldots y_{1}\right)$, then $\left(y_{n+1} \ldots\right.$ $\left.\ldots y_{1}\right) a=0$. Since $\bar{R}=R / I$ and $y_{1} y_{2} \ldots$ are subsets of ann (I), then $\overline{\mathrm{R}}=\left(0+\mathrm{y}_{\mathrm{n}+1}\right) \ldots\left(0+\mathrm{y}_{1}\right)(0+\mathrm{a})=\overline{\mathrm{y}}_{\mathrm{n}+1} \quad \overline{\mathrm{y}}_{\mathrm{n}} \ldots \overline{\mathrm{y}}_{1} \quad \overline{\mathrm{a}}=\overline{0}$, so $\quad \overline{\mathrm{y}}_{\mathrm{n}} \ldots \overline{\mathrm{y}}_{1} \quad \overline{\mathrm{a}}=0$ and $y_{n} \ldots y_{1} a \subseteq I$. Since every A.C.C. has maximal element [10, p.147] , then I \subseteq ann $\left(y_{n+1}\right)$. Thus $y_{n} \ldots y_{1} a \subseteq a n n\left(y_{n+1}\right)$, i.e., $y_{n+1}\left(y_{n} \ldots y_{1} a\right)=0$ proving this lemma.

Next we need the definition of T-nilpotent ideal.
Definition 1.3.15 [10, p. 291] : A set A of a ring R is called T-nilpotent if for every family $\left(a_{1}, a_{2}, \ldots\right), a_{i} \in A$ a $k \in N$ exists with a_{k} $a_{k-1} \ldots . . a_{1}=0, a_{1} a_{2} \ldots . a_{k}=0$.

The following result was proved by Armendariz and Park [2] .
Theorem 1.3.16 [14]: If R is P-injective and $R / \operatorname{Soc}(R)$ satisfies the A.C.C. on annihilators, then $J(R)$ is nilpotent .

Proof: Assume $J=J(R)$ and $K=S o c(R)$.Since R is P-injective, then by n theorem (1.2.10) $\mathrm{JK}=0$, so $\mathrm{J} \subseteq$ ann (K). It suffices to show that J is

T-nilpotent. $(\mathrm{J}+\mathrm{K}) / \mathrm{K}$ is nilpotent in R / K by hypothesis. Now let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ be given in J, we show that $a_{n} \ldots a_{2} a_{1}=0$ for some n. Sinece $R / \operatorname{Soc}(R)$ satisfies the A.C.C., then by lemma (1.3.14) ann $\left(a_{n+1} a_{n} \ldots a_{1}\right)=a n n\left(a_{n} \ldots a_{1}\right)$ for some n. So by corollary (1.1.12) $R a_{n+1} a_{n} \ldots a_{1}=R a_{n} \ldots a_{1}$. Hence $r a_{n+1}$ $a_{n} \ldots a_{1}=a_{n} \ldots a_{1}$ where $r \in R$. So $a_{n} \ldots a_{1}-r a_{n+1} \quad a_{n} \ldots a_{1}=0$, which implies $a_{n} \ldots a_{1}\left(1-r a_{n+1}\right)=0$. Since $r a_{n+1} \in J(R)$ if and only if $1-r a_{n+1}$ is invertible [10,p.220], then there exists $t \in R$ such that $a_{n} \ldots a_{1}\left(1-r a_{n+1}\right) t=0$, so (1$\left.r a_{n+1}\right) t=1$, then $a_{n} \ldots a_{1}=0$.

Corollary 1.3.17 [14]: If R is P -injective and satisfies the A.C.C. on annihilators, then $J(R)$ is nilpotent .

Proof: see [13] .

CHAPTER TWO

PRINCIPALLY QUASI-INJECTIVE MODULES AND OTHER CLASSES OF MODULES

Introduction:

In this chapter, we study the relation between the class of principally quasi-injective modules and other well-known classes of modules.

In section 1, we study the relation between principally quasi-injective modules and summand intersection property, summand sum property. For references [15],[4],[5].

In section 2, we study the relation between duo principally quasi-injective modules and uniform submodules.

In section 3 , we study the relation between principally quasi-injective modules and continuous modules where an R -module M is continuous if M has C_{1}-condition [8] and C_{2}-condition [15] .

Section 2.1 The Endomorphism Ring of a Principally

Quasi-Injective Module.

In this section we recall the definition of modules with summand intersection property (SIP) and summand sum property (SSP), and we look at some properties of these modules. For more details see [15],[4],[5]. We also study the relation between the module M being uniform and the ring of endomorphisms being local [15] .

Recall that an R-module M is called uniform if every submodule of M is essential in M, and the submodule U of M is essential if for every non-zero submodule A of $\mathrm{M}, \mathrm{A} \cap \mathrm{U} \neq 0$.

For example, the Z -module Z_{6} is not uniform where Z_{4} as a Z -module is uniform.

Recall that a ring R is called local ring if it has one unique maximal ideal.

Remark 2.1.1 [10, p.169]: A ring R is local ring if and only if the set of non-units of R is an ideal in R.

Proposition 2.1.2 [15] : Let M_{R} be a P.Q.-injective module with $\mathrm{S}=\mathrm{end}\left(\mathrm{M}_{\mathrm{R}}\right)$.
(1) If S is local, then M is uniform.
(2) If M is cyclic and uniform, then S is local.

Proof:

(1) Suppose N and K are non-zero submodules of M such that $\mathrm{N} \cap \mathrm{K}=0$, choose $0 \neq \mathrm{n} \in \mathrm{N}$ and $0 \neq \mathrm{k} \in \mathrm{K}$, define $\alpha:(\mathrm{n}+\mathrm{k}) \mathrm{R} \rightarrow \mathrm{M}$ by $\alpha[(n+k) r]=n r$. This is well-defined, in fact, let $(n+k) r_{1}=(n+k) r_{2}$ where $r_{1}, r_{2} \in R$, so $(n+k) r_{1}-(n+k) r_{2}=(n+k) r_{1}-r_{2} \in N \cap K=0$, then $(\mathrm{n}+\mathrm{k})\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)=0$. Hence $\alpha\left[(\mathrm{n}+\mathrm{k})\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)\right]=\mathrm{n}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)=0$. Therefore $\mathrm{n}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)=\mathrm{nr}_{1}-\mathrm{nr}_{2}=0$, so $\mathrm{nr}_{1}=\mathrm{nr}_{2}$. Since M is P.Q.-injective, then there
exists $\quad \bar{\alpha} \in S$ that extends α. Hence $(1-\bar{\alpha})(\mathrm{n})=0=\bar{\alpha}(\mathrm{k})$. Since S is local, then either $\bar{\alpha}$ is a unit or $(1-\bar{\alpha})$ is a unit, i.e., $n=0$ or $k=0$ which is a contradiction.

(2) Since M is cyclic, then by proposition (1.2.15) W(S)=J(S). Now if $\alpha \in S$ is a non-unit, then $\operatorname{ker}(\alpha) \neq 0$. Since M is uniform, then ker $(\alpha) \leq \mathrm{M}_{\mathrm{R}}$. Hence $\alpha \in \mathrm{W}(S)=\mathrm{J}(\mathrm{S})$, so $\mathrm{J}(\mathrm{S})$ contains all non-units of S . Thus by remark (2.1.1) S is local.

Definition 2.1.3 [10, p.281]: A ring R is called semiperfect if $\overline{\mathrm{R}}=\mathrm{R} / \operatorname{rad}(\mathrm{R})$ is semisimple and every idempotent element $\mathrm{s} \in \overline{\mathrm{R}}$ there is an idempotent element $\mathrm{e} \in \mathrm{R}$ with $\mathrm{s}=\mathrm{e}$

Proposition 2.1.4 [15]: If M is a finite direct sum of submodules with local endomorphism rings, then $\mathrm{S}=\mathrm{end}(\mathrm{M})$ is semiperfect .
The converse holds for P -injective duo modules.
Recall that an R -module M is multiplication R -module where R is commutative if for every submodule N of M , there exists an ideal I of R such that $\mathrm{N}=\mathrm{IM}$. It is known that every multiplication module is a duo module [17].

The following proposition is well-known, but we present here a proof for the sake of completeness.

Proposition 2.1.5 [8]: Let M be a duo R -module and A is a direct summand. Then
(1) A is itself a duo module .
(2) If M is a self-generator, then A is also a self-generator .

Proof:

(1) Let $\varphi \in \operatorname{end}(\mathrm{A}), \pi: \mathrm{M} \rightarrow \mathrm{A}, \mathrm{i}: \mathrm{A} \rightarrow \mathrm{M}$ be the projection and imbedding respectively. Then $\Psi=i_{0} \varphi_{0} \pi \in$ end (M). Since M is duo and $i_{0} \pi=1_{A}$, then for any submodule X of $A, \varphi(x)=\Psi(x) \subset X$, proving that A is duo.
(2) Since A is a direct summand, then $M=A \oplus B$ where $B \leq M$, hence for any $\varphi \in$ end (M) we get $\varphi(M)=\varphi(A+B)=\varphi(A)+\varphi(B)$. Since M is a self-generator, then X can be written as $X=\sum_{\varphi \in I} \varphi(M)=$ $\sum_{\varphi \in I}(\varphi(\mathrm{~A})+\varphi(\mathrm{B}))$ for some subset I of end (M) where X is a submodule of A. Since M is duo, then $\varphi(B) \subseteq B$, it follows that $\varphi(B)=0$ for all $\varphi \in \mathrm{I}$. Hence $X=\sum_{\varphi \in \mathrm{I}} \varphi(\mathrm{A})$. More over, φ can be considered as an endomorphism of A, since $\varphi(A) \subseteq A$. This shows that A is a self-generator.

The following result gives a relation between the module M being duo and the ring $S=e n d\left(M_{R}\right)$ being semiperfect.

Proposition 2.1.6 [15]: Let M_{R} be a duo, P.Q.-injective module for which $S=\operatorname{end}\left(M_{R}\right)$ is semiperfect. Then M is a finite direct sum of uniform P.Q.-injective modules.

Proof: Since S is semiperfect, then $M=M_{1} \oplus \ldots . . \oplus M_{n}$ where $S=\operatorname{end}\left(M_{R}\right)$ is local for each i. Since M is duo then each M_{i} is duo and P.Q.-injective. Hence by proposition (2.1.2) M_{i} is uniform.

Recall that an R-module M is said to have the summand intersection property (SIP) if the intersection of any two direct summands is a gain a direct summand [15],[4],[5].

Examples 2.1.7 :

(1) Every multiplication R- module has the SIP [5] .
(2) In particular every commutative ring with identity has the SIP, in fact, assume $R=A \oplus A_{1}=B \oplus B_{1}$ where $A, B, A_{1}, B_{1} \subseteq R$. Since A and B are summands of R, then $A=R e$ and $B=R f$ such that e and f are idempotent elements in R , then by [10, p.174], it is easy to check that $A \cap B=$ Ref. Hence $A \cap B$ is a direct summand in R.
(3) Consider the module $\mathrm{M}=\mathrm{Z}_{4} \oplus \mathrm{Z}_{2}$ as a Z -module, hence $\mathrm{M}=\{(0,0)$, $(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)\}$, let $\mathrm{A}=\mathrm{Z}_{4} \oplus 0$ and $B=Z(1,1)$, the submodule generated by $(1,1)$. Now A and B are summands of M. But $A \cap B=\{(0,0),(2,0)\}$ is not a summand of M. Thus M does not have the SIP .

Proposition 2.1.8 [15]: Let M_{R} be a P.Q.-injective, duo module, then M_{R} has the SIP .

Proof: Suppose N and K are direct summands of M , i.e., $\mathrm{M}=\mathrm{N} \oplus \mathrm{N}_{1}$ and $\mathrm{M}=\mathrm{K} \oplus \mathrm{K}_{1}$ where $\mathrm{N}_{1}, \mathrm{~K}_{1}$ are submodules of M . We must show that $\mathrm{N} \cap \mathrm{K}$ is a summand of M. Note that $\mathrm{N}=\mathrm{N} \cap\left(\mathrm{K} \oplus \mathrm{K}_{1}\right)$. Since M is duo, then by proposition (1.1.21) $\mathrm{N}=\mathrm{N} \cap\left(\mathrm{K} \oplus \mathrm{K}_{1}\right)=(\mathrm{N} \cap \mathrm{K}) \oplus\left(\mathrm{N} \cap \mathrm{K}_{1}\right)$. Hence $\mathrm{M}=\mathrm{N} \oplus$ $\mathrm{N}_{1}=(\mathrm{N} \cap \mathrm{K}) \oplus\left(\mathrm{N} \cap \mathrm{K}_{1}\right) \oplus \mathrm{N}_{1}$ and so $\mathrm{N} \cap \mathrm{K}$ is indeed a direct summand.

Recall that an R -module M is said to have the summand sum property (SSP) if the sum of any two summands of M is again a summand [4],[5],[15].

The following proposition shows that there exists a relation between SIP and SSP under the C_{3}-condition .

Proposition 2.1.9 [15]: If M_{R} has the C_{3}-condition and the SIP, then M has the SSP .

Proof : Suppose N and K are direct summands of M . We must show that $\mathrm{N}+\mathrm{K}$ is a summand. Since M has the SIP, then $\mathrm{N} \cap \mathrm{K}$ is a direct summand , i.e., $\mathrm{M}=(\mathrm{N} \cap \mathrm{K}) \oplus \mathrm{X}$ where X is a submodule of M . Now we have $K=(N \cap K) \oplus(K \cap X)$. So $N+K=N+[(N \cap K) \oplus(K \cap X)]=N \oplus(K \cap X)$. So N and $K \cap X$ are both summands, then $N+K$ is a direct summand because M satisfies C_{3}-condition.

Proposition 2.1.10 [15]: Let M_{R} be a cyclic, P.Q.-injective module. Then M has both the SIP and the SSP.

Proof: Since M is cyclic, then M is multiplication module and hence is duo, then by proposition (2.1.8) M has the SIP. Since M is cyclic, P.Q.-injective, then by proposition (1.2.13(2)) M has C_{2}-condition, hence M has C_{3}-condition [14]. Thus by proposition (2.1.9) M has SSP.

Section 2.2 Uniform Submodules

In a duo principally quasi-injective module M there is a relationship between the maximal left ideals of the endomorphism ring and the maximal uniform submodules of M. This is explored in this section. Many of the ideas in this section trace back to Camillo [7].

We need the following lemma for the proof of the theorem.
Lemma 2.2.1 [15]: Let M_{R} be a P.Q.-injective module. Let N be a non-zero submodule of M and let $\mathrm{N} \subseteq{ }^{\text {ess }} \mathrm{P} \subseteq \mathrm{M}$ and $\mathrm{N} \subseteq \simeq^{\text {ess }} \mathrm{Q} \subseteq \mathrm{M}$. If P is fully invariant in M , then $\mathrm{N} \subseteq{ }^{\text {ess }} \mathrm{P}+\mathrm{Q}$.

Proof : Suppose $0 \neq p+q \in P+Q$. Since $N \subseteq^{\text {ess }} Q$, then if $(p+q) R \cap Q \neq 0$, then $(p+q) R \cap N \neq 0 .(p+q) \operatorname{ann}_{R}(p) \subseteq(p+q) R \cap q R$, in fact, let $x \in(p+q) \operatorname{ann}_{R}(p)$, then $x=(p+q) r$ where $r \in R$ and $p r=0$, hence $x=p r+q r=0 \quad+q r=q r \in$ $(p+q) R \cap q R$. Then $(p+q) R \cap Q \neq 0$, so $(p+q) R \cap N \neq 0$ where $(p+q)$ $\operatorname{ann}_{R}(p) \neq 0$. Now assume that $(p+q) \operatorname{ann}_{R}(p)=0$. Then $\operatorname{ann}_{R}(p) \subseteq \operatorname{ann}_{R}(p+q)$, i.e., $\operatorname{ann}_{R}(p+q)=\left\{r \in \operatorname{ann}_{R}(p) \backslash(p+q) r=0\right\}$ where $p r=0$. Therefore by theorem (1.1.9(3)) $\mathrm{S}(\mathrm{p}+\mathrm{q}) \subseteq$ Sp. But $\mathrm{p}+\mathrm{q} \in \mathrm{Sp} \subseteq \mathrm{p}$, since p is fully invariant, then $p+q \in P$, but $N \subseteq P$, hence $p+q \in N$ implies that $(p+q) R \cap N \neq 0$.

We also need the following definition.
Definition 2.2.2 [15] : A submodule A of an R-module M is said to be closed submodule of M if A has no proper essential extension in M , i.e., if $\mathrm{A} \leq \mathrm{B} \leq \mathrm{M}$, then $\mathrm{B}=\mathrm{A}$.
For example $\{\overline{0}, \overline{3}\}$ closed in $\mathrm{Z}_{6},\{\overline{0}, \overline{2}, \overline{4}\}$ closed in Z_{6}, but $\{\overline{0}, \overline{2}\}$ is not closed in Z_{4}.

Recall that every non-zero submodule N of M_{R} has (by Zorn's lemma [10,p.25]) a maximal essential extension P in M called closure of N in M .

Theorem 2.2.3 [15]: Let M_{R} be a P.Q.-injective module and suppose a non-zero submodule N of M has a fully invariant closure P in M . Then P contains every essential extension of N , so P is the unique closure of N in M.

Proof : Suppose $\mathrm{N} \subseteq{ }^{\text {ess }} \mathrm{Q} \subseteq \mathrm{M}$. then by lemma (2.2.1) $\mathrm{N} \subseteq{ }^{\text {ess }} \mathrm{P}+\mathrm{Q}$. Since $\mathrm{N} \subseteq \mathrm{P}$, then $\mathrm{P} \subseteq{ }^{\text {ess }} \mathrm{P}+\mathrm{Q}$, but P is closed, this means that $\mathrm{P}=\mathrm{P}+\mathrm{Q}$, so $\mathrm{Q} \subseteq \mathrm{P}$. The result follows.

Our main concern here is with uniform submodules U of a module M_{R}. By Zorn's lemma [10, p.25] . U has maximal uniform extensions in M. These are all the closure of U , in fact, they are precisely the closed uniform submodules of M . So every uniform closed submodule is a maximal uniform submodule and is a maximal uniform extension of each of its non-zero submodules.

Remark 2.2.4 [15] : If U is a uniform submodule of M with $S=\operatorname{end}\left(M_{R}\right)$, define $A U=\{\alpha \in S \backslash$ ker $(\alpha) \cap U \neq 0\}$. If $u R \neq 0$ is cyclic uniform, we call u a uniform element of M and write $\mathrm{AuR}=\mathrm{AU}$. It can be easily checked that AU is a left ideal in S.

Proposition 2.2.5 [15]: Let M_{R} be a P.Q.-injective module with $S=e n d\left(M_{R}\right)$. If u is a uniform element of M, then $A u$ is the unique maximal left ideal of S containing $\operatorname{ann}_{S}(u)$.

Proof: Suppose that $\operatorname{ann}_{S}(u) \subset X$ where X is a left ideal of $S, X \neq S$. Now if $\alpha \in \mathrm{X}-\mathrm{Au}$, then $\operatorname{ker}(\alpha) \cap u \mathrm{R}=0$, hence by proposition (1.1.10) $S=a n_{S}(0)=a n n_{S}[\operatorname{ker}(\alpha) \cap u R]=S \alpha+\operatorname{ann}_{S}(u) \subseteq X$. Then $S \subseteq X$ a contradiction. Thus $\mathrm{X} \subseteq \mathrm{Au}$, also Au is unique because it is maximal and $\mathrm{X} \subseteq A u$. Thus the proof is complete.

Corollary 2.2.6 [14] : Let R be a P-injective ring. If $u \in R$ is a uniform element, define $M_{u}=\{x \in R \operatorname{lann}(x) \cap u R \neq 0\}$. Then $M u$ is the unique maximal ideal which contains ann(u).

Proposition 2.2.7 [15]: Let M_{R} be a P.Q.-injective module and let P and Q be fully invariant maximal uniform submodules of M. If $A p=A Q$ then $\mathrm{P}=\mathrm{Q}$.

Proof : It suffices (by theorem 2.2.3) to show that $\mathrm{P} \cap \mathrm{Q} \neq 0$, since then both P and Q are fully invariant closures of $\mathrm{P} \cap \mathrm{Q}$. Assume on the contrary that $\mathrm{P} \cap \mathrm{Q}=0$. Choose $0 \neq \mathrm{p} \in \mathrm{P}, 0 \neq \mathrm{q} \in \mathrm{Q}$ and consider $\gamma: \mathrm{pR}+\mathrm{qR} \rightarrow \mathrm{M}$ given by $\gamma(\mathrm{pr}+\mathrm{qs})=\mathrm{pr}$ where $\mathrm{r}, \mathrm{s} \in \mathrm{R}$. It is easily seen that γ is well-defined. Since M is P.Q.-injective, then there exists $\alpha \in S$ which extends γ.

We have $\alpha(p)=\alpha[i(p+o)]=\gamma(p+o)=p$, hence $\alpha(p)=p$, so $p-\alpha(p)=$ (1$\alpha)(\mathrm{p})=0$, then $\mathrm{p} \in \operatorname{ker}(1-\alpha)$. Also $\alpha(\mathrm{q})=\alpha[\mathrm{i}(\mathrm{o}+\mathrm{q})]=\gamma(\mathrm{o}+\mathrm{q})=0$, hence $\alpha(\mathrm{q})=0$, then $\mathrm{q} \in \operatorname{ker}(\alpha)$. Thus $\mathrm{Ap}=\{1-\alpha \in \operatorname{Siker}(1-\alpha) \cap \mathrm{P} \neq 0\}$, $\mathrm{AQ}=\{\alpha \in \operatorname{Slker}(\alpha) \cap \mathrm{Q} \neq 0\}$. So $1-\alpha \in \mathrm{Ap}$ and $\alpha \in \mathrm{AQ}=\mathrm{Ap}$. It follows that $1 \in \mathrm{Ap}$ a contradiction. Hence $\mathrm{P} \cap \mathrm{Q} \neq 0$ and $\mathrm{P}=\mathrm{Q}$.

Proposition 2.2.8 [15]: Let M_{R} be a P.Q.-injective module with $S=\operatorname{end}\left(M_{R}\right)$ and let $N=u_{1} R \oplus \ldots \oplus u_{n} R$ where each $u_{i} \in M$ is a uniform element. If $A \subseteq S$ is a maximal left ideal not of the form $A U$ for any uniform submodule $\mathrm{U} \subseteq \mathrm{M}$, then there exists $\beta \in \mathrm{A}$ such that $\operatorname{ker}(1-\beta) \cap \mathrm{N}$ $\complement^{\text {ess }} \mathrm{N}$.
 $\operatorname{ann}_{R}\left(\alpha u_{1}\right) \subseteq \operatorname{ann}_{R}\left(u_{1}\right)$, in fact, let $r \in \operatorname{ann}_{R}\left(\alpha u_{1}\right)$, then $\alpha\left(u_{1}\right) r=0=\alpha\left(u_{1} r\right)$, implies that $u_{1} r \in \operatorname{ker}(\alpha) \cap u_{1} R$, hence $u_{1} r=0$, thus $r \in \operatorname{ann}_{R}\left(u_{1}\right)$ and so $u_{1} \in S \alpha u_{1}$ by theorem (1.1.9(3)), say $u_{1}=\beta \alpha u_{1}$ where $\beta \in S$, so $u_{1}-\beta \alpha u_{1}=(1-$ $\left.\beta_{1}\right) \mathrm{u}_{1}=0$ where $\beta_{1}=\beta \alpha \in \mathrm{A}$. If ker $\left(1-\beta_{1}\right) \cap \mathrm{u}_{\mathrm{i}} \mathrm{R} \neq 0$ for each $\mathrm{i}>1$, we are done. Since $\left(1-\beta_{1}\right) u_{2} R \cong u_{2} R$, if ker $\left(1-\beta_{1}\right) \cap u_{2} R=0$, then $\left(1-\beta_{1}\right) u_{2}$ is a uniform element and so, as before, there exists $\gamma \in \mathrm{A}$ such that (1- γ) (1$\left.\beta_{1}\right)=0$, i.e., $\operatorname{ker}(1-\gamma) \cap u_{2} R=0$ where $\gamma \in A$. Then $\operatorname{ann}_{R}(1-\gamma) u_{2} \subseteq \operatorname{ann}_{R}\left(u_{2}\right)$, implies that $\mathrm{u}_{2} \in \mathrm{~S}(1-\gamma) \mathrm{u}_{2}$, so $\mathrm{u}_{2}=\beta_{1}(1-\gamma) \mathrm{u}_{2}$ where $\beta_{1} \in \mathrm{~S}$, hence $\mathrm{u}_{2}-\beta_{1}(1-$ $\gamma) \mathrm{u}_{2}=0=\left(1-\beta_{1}\right)(1-\gamma) \mathrm{u}_{2}$. If we take $\beta_{2}=\gamma+\beta_{1}-\gamma \beta_{1}$, then $\beta_{2} \in \mathrm{~A}$ and have (1$\left.\beta_{2}\right) \mathrm{u}_{2}=0$ and $\left(1-\beta_{2}\right) \mathrm{u}_{1}=0$. This means that ker $\left(1-\beta_{2}\right) \cap \mathrm{u}_{\mathrm{i}} \mathrm{R} \neq 0$ for $\mathrm{i}, 1,2$. This process continues to give $\beta \in \mathrm{A}$ such that $\operatorname{ker}(1-\beta) \cap u_{i} \mathrm{R} \neq 0$ for each i , this complete the proof.

Section 2.3 Quasi-Principally - Injective Modules and

Continuous Modules :

An R-module M with C_{1}-condition and C_{2}-condition is called continuous module where M is said to have the C_{1}-condition, if every submodule of M is essential in a direct summand of M [8] and it has C_{2}-condition if every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M. In this section we study the relation between Q.P.-injective modules and continuous modules. For a reference on continuous module see [8] .

Proposition 2.3.1 [8]: If M is uniform and P.Q.-injective module, then M is continuous module.

Proof: Since M is uniform, then every submodule of M is essential in M, hence M has C_{1}-condition. Also M is P.Q.-injective module, then by proposition (1.2.13) M has C_{2}-condition. Hence M is continuous module.

Definition 2.3.2 [20] : A submodule K of an R-module M is called M-cyclic submodule of M if it is isomorphic to M / X for some submodule X of M. Equivalently, K is M-cyclic if there exists $\alpha \in \operatorname{end}(M)$ such that $K=\alpha(M)$.

Proposition 2.3.3 [8] : Let M be a Q.P.-injective module. If $\mathrm{S}=\mathrm{end}\left(\mathrm{M}_{\mathrm{R}}\right)$ is local, then for any non-zero fully invariant M-cyclic submodules A and B of $\mathrm{M}, \mathrm{A} \cap \mathrm{B} \neq 0$.

Proof : Let $0 \neq s(M)=A, 0 \neq t(M)=B$ where $s, t \in S$ and $A \cap B=0$. Define the $\operatorname{map} \varphi:(\mathrm{s}+\mathrm{t})(\mathrm{M}) \rightarrow \mathrm{M}$ by $(\mathrm{s}+\mathrm{t})(\mathrm{m}) \mapsto \mathrm{s}(\mathrm{m})$ for every $\mathrm{m} \in \mathrm{M}$. This map is well-defined, in fact, $(\mathrm{s}+\mathrm{t})(\mathrm{m})=(\mathrm{s}+\mathrm{t})\left(\mathrm{m}^{\prime}\right)$ implies $\mathrm{s}\left(\mathrm{m}-\mathrm{m}^{\prime}\right)=\mathrm{t}$ $\left(m^{\prime}-m\right) \in A \cap B=0$, so $s(m)=s\left(m^{\prime}\right)$ where $m, m^{\prime} \in M$. Since M is P.Q.-injective, then there exists $\psi \in S$ such that
$\left.(\Psi o i)\right|_{(s+t)(M)}=\left.\Psi\right|_{(s+t)(M)}=\left.\varphi\right|_{(s+t)(M)}$, i.e., for any $\mathrm{m} \in \mathrm{M}, \varphi(\mathrm{s}+\mathrm{t})$ $(\mathrm{m})=\psi(\mathrm{s}+\mathrm{t})(\mathrm{m})$. Since $\varphi(\mathrm{s}+\mathrm{t})(\mathrm{m})=\mathrm{s}(\mathrm{m})$, then $\mathrm{s}=\psi(\mathrm{s}+\mathrm{t})$. This implies that $\mathrm{s}-\psi(\mathrm{s}+\mathrm{t})=\mathrm{s}-\psi_{\mathrm{s}}=(1-\psi)_{\mathrm{s}}=\psi_{\mathrm{t}}$. Since A and B are fully invariant submodules, then $(1-\psi)_{s(M)} \subseteq A$ and $\psi_{\mathrm{t}(\mathrm{M})} \subseteq$ B. Since $(1-\psi)_{\mathrm{s}(\mathrm{M})}=$ $\psi_{\mathrm{t}(\mathrm{M})} \in \mathrm{A} \cap \mathrm{B}=0$, then $(1-\psi)_{\mathrm{s}}=0$ and $\psi_{\mathrm{t}}=0$. But S is local, then either ψ or $1-\psi$ is invertible, if ψ is invertible, then $t=0$ a contradiction or $1-\psi$ is invertible, then $\mathrm{s}=0$ a contradiction. Hence $\mathrm{A} \cap \mathrm{B} \neq 0$.

Corollary 2.3.4 [8]: If M is a Q.P.-injective duo module which is a self-generator with local endomorphism ring, then M is uniform, hence it is continuous .

Proof : Since M is self-generator, then for any $m \in M, m R$ contains a non-zero M -cyclic submodule. Hence by proposition (2.3.3) M is uniform. Since M is P.Q.-injective, then by proposition (2.3.1) M is continuous.

It is known that every multiplication module is duo and self-generator [17], thus

Corollary 2.3.5: If M is Q.P.-injective multiplication module with $S=\operatorname{end}\left(M_{R}\right)$ is local, then M is uniform, hence M is continuous.

Proposition 2.3.6 [8]: Let M be a Q.P.-injective and $\oplus_{i \in \mathrm{I}} \mathrm{B}_{\mathrm{i}}$ a direct sum of fully invariant M-cyclic submodules of M . Then for any fully invariant submodule A of $\mathrm{M} \mathrm{A} \cap\left(\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{B}_{\mathrm{i}}\right)=\oplus_{\mathrm{i} \epsilon \mathrm{I}}\left(\mathrm{A} \cap \mathrm{B}_{\mathrm{i}}\right)$.

Proof : It is known that $\oplus_{i}\left(A \cap B_{i}\right) \subseteq \mathrm{A} \cap\left(\oplus_{i} \mathrm{~B}_{\mathrm{i}}\right)$. Let a $\in \mathrm{A} \cap\left(\oplus_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}\right)$ and $B_{i}=s_{i}(M)$ such that $s_{i} \in S=\operatorname{end}\left(M_{R}\right)$.Then $a=b_{1}+b_{2}+\ldots+b_{n}$ where $\mathrm{b}_{\mathrm{i}}=\mathrm{s}_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{i}}\right) \in \mathrm{B}_{\mathrm{i}}$ for some $\mathrm{m}_{\mathrm{i}} \in \mathrm{M}$. Notice that the $\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{S}_{\mathrm{si}}$ is direct. Since B is fully invariant, then $\mathrm{S}_{\mathrm{si}}(\mathrm{M})=\mathrm{S}_{\mathrm{Bi}} \subset \mathrm{B}_{\mathrm{i}}(\mathrm{i} \in \mathrm{I})$. So let $\pi_{\mathrm{K}}: \oplus_{i=1}^{n} \mathrm{~S}_{\mathrm{i}}(\mathrm{M}) \rightarrow$ $S_{K}(M), 1 \leq k \leq n$ be the projection. Since M is Q.P.-injective , then by [18], we can find an endomorphism $\varphi_{\mathrm{K}}: \mathrm{M} \rightarrow \mathrm{M}$ which extends π_{K}. Since π_{K} is onto, then there exists $\mathrm{b}_{\mathrm{K}} \in \mathrm{S}_{\mathrm{K}}(\mathrm{M})$ such that $\mathrm{b}_{\mathrm{K}}=\pi_{\mathrm{K}}(\mathrm{a}) \subseteq \mathrm{A} \cap \mathrm{B}_{\mathrm{K}}$ for any $1 \leq k \leq n$ because A is fully invariant. Hence $A \cap\left(\oplus_{i \in I} B_{i}\right) \subset \oplus_{i \in I}\left(A \cap B_{i}\right)$.

Proposition 2.3.7 [8]: Let M be a Q.P.-injective and duo module. If A and B are direct summands of M, then so are $A \cap B$ and $A+B$.

Proof : Let $\mathrm{M}=\mathrm{A} \oplus \mathrm{A}_{1}=\mathrm{B} \oplus \mathrm{B}_{1}$. Then by proposition (2.3.6) we have $B=B \cap M=B \cap\left(A \oplus A_{1}\right)=(B \cap A) \oplus\left(B \cap A_{1}\right)$. Hence $M=(B \cap A) \oplus\left(B \cap A_{1}\right) \oplus$ B_{1}. Thus $A \cap B$ is a direct summand of M. More over $A+B=A+(B \cap A) \oplus$ $\left(B \cap A_{1}\right)=[A+(B \cap A)] \oplus\left(B \cap A_{1}\right)=A+\left(B \cap A_{1}\right)$. Since M is Q.P.-injective, A and B are direct summands of M, then by [18] M has C_{3}-condition, hence $\mathrm{A}+\mathrm{B}$ is a direct summand of M and the proof is now complete.

Corollary 2.3.8 : Let M be a Q.P.-injective multiplication module. If A and B are direct summands of M, then so are $A \cap B$ and $A+B$.

We observed that every uniform, Q.P.-injective module is continuous, we now consider the case when M is Q.P.-injective module which is a direct sum $\mathrm{M}=\oplus_{\mathrm{i} \in \mathrm{I}} \mathrm{M}_{\mathrm{i}}$ of uniform submodules. In this case, if M is duo, then by proposition (2.3.6) every submodule A of M can be written in the form $A=\oplus_{j \in J}\left(A \cap M_{j}\right)$ where $J \subset I$ and $A \cap M_{j} \neq 0, j \in J$. Since each $A \cap M_{j} \leq M_{\mathrm{e}}$, we see that $\mathrm{A}_{\mathrm{e}} \leq \oplus_{\mathrm{j} \in \mathrm{J}} \mathrm{M}_{\mathrm{j}}$. Thus we have proved.

Theorem 2.3.9 [8]: Let $M=\oplus_{i \in I} M_{i}$ be a Q.P.-injective module where each M_{i} is uniform. If M is duo module, then M is continuous module .

Before the next result we need this defintion.
Definition 2.3.10 [10, p. 275$]$: An R-module M is called semiperfect if every epimorphic image of M has a projective cover where an epimorphism $\sigma: P \rightarrow M$ is called projective cover of M if P is projective and σ is small epimorphism.

Theorem 2.3.11 [8] : Suppose that M is semiperfect, duo, Q.P.-injective module. If M is a self-generator, then M is continuous module.

Proof : Since M is Q.P.-injective module, then by proposition (1.2.13) M has C_{2}-condition. Hence it is enough to prove that M has C_{1}-condition. Since M is self-generator and semiperfect, then by $[19,42.5]$ we can write $M=\oplus_{i \in I} M_{i}$ where $M_{i} / \operatorname{rad}\left(M_{i}\right)$ is simple for each $i \in I$. then $\operatorname{rad}\left(M_{i}\right)$ is maximal in M_{i}. Since each M_{i} is self-generator and semiperfect, $\operatorname{rad}\left(M_{i}\right)$ is small in M_{i} and hence M_{i} is indecomposable. By [10, p.285], end $\left(M_{i}\right)$ is local for each $\mathrm{i} \in \mathrm{I}$. By proposition (2.1.5) each M_{i} is duo and a self-generator. Since any direct summand of P.Q.-injective is again P.Q.-injective, then by corollary (2.3.4) each M_{i} is uniform, then M has C_{1}-condition. Therefore M is continuous.

Corollary 2.3.12 : Suppose that M is semiperfect. If M is Q.P.-injective multiplication module, then M is continuous module.

CHAPTER THREE

SEMI - INJECTIVE MODULES AND FULLY STABLE MODULES

Introduction:

Let M be an R -module with $\mathrm{S}=\mathrm{end}\left(\mathrm{M}_{\mathrm{R}}\right)$. In this chapter we study briefly notions of injectivity, like M-principally injective, semi-injectivity, π - injectivity and direct- injectivity. More over, we study the notions of fully stability. This chapter consists of two sections.

In section 1, we study the above mentioned types of injectivity and we study the definition of M-cyclic submodule instate of cyclic submodule, this concept is studied in [20] .

In section 2, we study fully stable and fully invariant modules in principally quasi-injective modules and rings.

Section 3.1 On the Endomorphism Ring of a Semi - Injective

Module

In this section we study the endomorphism rings of semi-injective modules, in particular we study the Jacobson radical of S with its relation to the sets $\mathrm{W}(\mathrm{S})=\{\mathrm{s} \in \mathrm{S} \backslash \operatorname{ker}(\mathrm{s}) \leq \mathrm{M}\}$ and $\Delta=\{\mathrm{s} \in \mathrm{S} \backslash \operatorname{ker}(1+\mathrm{ts})=0$ for all $t \in S\}$. Most of the results of this section appeared in [20].

Definition 3.1.1 [20]: An R-module N is called M-principally injective if every R-homomorphism from M -cyclic submodule K of M to N can be extended to M, in general, the following diagram is commutative, $\varphi_{0} \mathrm{i}=\mathrm{f}$ where $K \cong M / L$ and L is a submodule of M.

Equivalently, for any endomorphism s of M, every homomorphism from $s(M)$ to N can be extended to a homomorphism from M to $N, h_{0} i=\alpha$

Remark 3.1.2 : An M-cyclic submodules and cyclic submodules are completely different concepts.

For example, Z as a submodule of the Z -module Q is cyclic but not Q-cyclic because every non-zero homomorphism $\mathrm{f}: \mathrm{Q} \rightarrow \mathrm{Q}$ is an epimorphism. On the other hand, let $\mathrm{M}=\mathrm{Z}_{2} \oplus \mathrm{Z}_{2} \oplus \mathrm{Z}_{3}$ considered as a

Z-module. Since $M / Z_{3} \cong Z_{2} \oplus Z_{2}$, then $Z_{2} \oplus Z_{2}$ is M-cyclic. But $Z_{2} \oplus Z_{2}$ is not cyclic .

The following proposition gives a characterization of M-principally injective modules.

Proposition 3.1.3 [20]: Let M and N be R-modules. Then N is M-principally injective if and only if for each $s \in S=$ end (M). Hom_{R} $(M, N)_{S}=\left\{f \in \operatorname{Hom}_{R}(M, N) \backslash f(\operatorname{ker}(s))=0\right\}$ where $\operatorname{Hom}(M, N)_{S}=\{f s \backslash f \in$ $\operatorname{Hom}(\mathrm{M}, \mathrm{N})\}$.
$\underline{\text { Proof } \Rightarrow \text {)Assume }} \mathrm{N}$ is M-principally injective, we want to show that $\operatorname{Hom}_{R}(\mathrm{M}, \mathrm{N})_{\mathrm{S}}=\left\{\mathrm{f} \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N}) \backslash \mathrm{f}(\operatorname{ker}(\mathrm{s}))=0\right\}$, it is clear that Hom_{R} $(\mathrm{M}, \mathrm{N})_{\mathrm{S}} \subseteq\left\{\mathrm{f} \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N}) \backslash \mathrm{f}(\operatorname{ker}(\mathrm{s}))=0\right\}$. Conversely, let $\mathrm{f} \in \operatorname{Hom}_{R}$ $(\mathrm{M}, \mathrm{N}) \backslash \mathrm{f}(\operatorname{ker}(\mathrm{s}))=0$, hence $\operatorname{ker}(\mathrm{s}) \subseteq \operatorname{ker}(\mathrm{f})$. Define a homomorphism $\varphi: \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{N}$ by $\varphi[\mathrm{s}(\mathrm{M})]=\mathrm{f}(\mathrm{m}) \forall \mathrm{m} \in \mathrm{M}, \varphi$ is well-defined, in fact, let $s\left(m_{1}\right)=s\left(m_{2}\right)$ where $m_{1}, m_{2} \in M$, hence $s\left(m_{1}\right)-s\left(m_{2}\right)=s\left(m_{1}-m_{2}\right)=0$, then $m_{1}-m_{2} \in \operatorname{ker}(\mathrm{~s}) \subseteq \operatorname{ker}(\mathrm{f})$, so $\mathrm{m}_{1}-\mathrm{m}_{2} \in \operatorname{ker}(\mathrm{f})$. Thus $\mathrm{f}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)=\mathrm{f}\left(\mathrm{m}_{1}\right)$ $f\left(m_{2}\right)=0$, which implies $f\left(m_{1}\right)=f\left(m_{2}\right)$, so $\varphi\left[s\left(m_{1}\right)\right]=\varphi\left[s\left(m_{2}\right]\right.$. Since N is M-principally injective, then there exists an R-homomorphism t: $\mathrm{M} \rightarrow \mathrm{N}$ such that $\mathrm{t}_{0} \mathrm{i}=\varphi$ where $\mathrm{i}: \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{M}$ is the inclusion map. Now $\mathrm{f}(\mathrm{M})=$ $\varphi[\mathrm{i}(\mathrm{s}(\mathrm{M}))]=\varphi[\mathrm{s}(\mathrm{M})]=\mathrm{t}[\mathrm{i}(\mathrm{s}(\mathrm{M}))]=\mathrm{t}[\mathrm{s}(\mathrm{M})]$. Hence $\mathrm{f}=\mathrm{ts}$ and therefore $\mathrm{f} \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})_{\mathrm{S}}$

$\Leftarrow)$ Suppose that $\varphi: \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{N}$ is an R -homomorphism. Then $\varphi_{\mathrm{s}} \in$ $\operatorname{Hom}_{R}(\mathrm{M}, \mathrm{N})$ and $\varphi_{\mathrm{s}} \quad[\operatorname{ker}(\mathrm{s})]=0$. By assumption, we have
$\varphi[s(M)]=u[s(M)]=u[i(s(M))]$ for some $u \in \operatorname{Hom}_{R}(M, N)$. This shows that N is \quad M-principally injective.

Definition 3.1.4 [20]: An R-module M is called semi-injective if it is M- principally injective module.

It was shown lemma (1.2.14) that $\mathrm{W}(\mathrm{S}) \subseteq \mathrm{J}(\mathrm{S})$, the following gives a condition that implies equality.

Proposition 3.1.5[20]: Let M be semi-injective, then $W(S) \subseteq J(S)$ and equality holds if $S / W(S)$ is regular.

Proof: If $s \in J(S)$, then 1-s α has a left inverse. Since $S / W(S)$ is regular, then $\mathrm{s}+\mathrm{W}(\mathrm{S})=\mathrm{s} \alpha \mathrm{s}+\mathrm{W}(\mathrm{S})$ for some $\alpha \in \mathrm{S}$. This implies that $\mathrm{s}-\mathrm{s} \alpha \mathrm{s}=(1-\mathrm{s} \alpha)$ $\mathrm{s} \in \mathrm{W}(\mathrm{S})$, so there exists $\mathrm{g} \in \mathrm{S}$ such that $\mathrm{g}(1-\mathrm{s} \alpha) \mathrm{s}=1 . \mathrm{s}=\mathrm{s} \in \mathrm{W}(\mathrm{S})$. This shows that $\mathrm{W}(S)=J(S)$.

Corollary 3.1.6[20]: : Let M be semi-injective . If $S / J(S)$ is regular, then $S / W(S)$ is regular if and only if $J(S)=W(S)$.

Proof \Rightarrow) Since $S / W(S)$ is regular, then by proposition (3.1.5) $J(S)=W(S)$.
$\Leftarrow)$ Since $\mathrm{S} / \mathrm{J}(\mathrm{S})$ is regular and $\mathrm{J}(\mathrm{S})=\mathrm{W}(\mathrm{S})$, then $\mathrm{S} / \mathrm{J}(\mathrm{S})=\mathrm{S} / \mathrm{W}(\mathrm{S})$ is regular.

Remark 3.1.7 [20]: Let M be semi-injective ,then $J(S)=\Delta$
Proof: Let $s \in J(S)$, then for each $t \in S, 1+$ ts has a left inverse in S, there exists $g \in S$ such that $g(1+t s)=1_{M}$, hence $1+$ ts is monomorphism, thus ker $(1+\mathrm{ts})=0$. Therefore $\mathrm{s} \in \Delta$. On the other hand, if $s \in \Delta$, then ker $(1+\mathrm{ts})=0$ for all $t \in S, f[\operatorname{ker}(1+\mathrm{ts})]=\mathrm{f}(0)=0$, which implies that $\mathrm{s} \in \mathrm{ann}_{\mathrm{S}}[\operatorname{ker}(1+\mathrm{ts})]=\mathrm{S}$, thus by proposition (3.1.3) $\mathrm{s}=\mathrm{s}(1+\mathrm{ts})$. In particular $\mathrm{g}(1+\mathrm{ts})=1_{\mathrm{M}}$ for some $\mathrm{g} \in \mathrm{S}$, then by $[\mathbf{1 0}, \mathbf{p . 2 2 0}] \mathrm{s} \in \mathrm{J}(\mathrm{S})$.

Remark 3.1.8 [20]: Let M be semi-injective. If M is uniform, then $\mathrm{Z}(\mathrm{Ss}) \subseteq \mathrm{J}(\mathrm{S})$.

Proof : Let $s \in Z(S)$, then $\operatorname{ker}(s) \neq 0$. For any $t \in S$, we have $\operatorname{ker}(s) \cap$ ker $(1+\mathrm{ts})=0$, then $\operatorname{ker}(1+\mathrm{ts})=0$. Hence by (3.1.7) $\mathrm{s} \in \mathrm{J}(\mathrm{S})$.

Before the next result we need some definitions.
Definition 3.1.9 [20] : An R-module M is called π-injective if for all submodules U and V of M with $U \cap V=0$, there exists $f \in S$ with $U \subseteq k e r f$ and $\mathrm{V} \subseteq$ ker (1-f) .

Definition 3.1.10 [20] : An R-module M is said to be direct-injective if for any direct summand D of M, every monomorphism $f: D \rightarrow M$ splits.

Theorem 3.1.11 [20] : Let M be a semi-injective R-module. Then
(1) If S is local then $J(S)=\{s \in S \backslash \operatorname{ker}(s) \neq 0\}$.
(2) If $\operatorname{Im}(s) \subseteq \complement^{\text {ess }} M$ where $s \in S$, then any monomorphism $t: s(M) \rightarrow M$ can be extended to a monomorphism in S .
(3) If M is uniform, then S is local ring and $J(S)=W(S)$.
(4) For $s \in S$, if M is uniform and s is left invertible, then s is invertible.
(5) M is uniform if and only if S is local and M is π-injective .

Proof : (1) Since S is local, $S s \neq S$ for any $s \in J(S)$. If ker ($s)=0$, then α : $\mathrm{s}(\mathrm{M}) \rightarrow \mathrm{M}$ given by $\alpha[\mathrm{s}(\mathrm{m})]=\mathrm{m}$ for any $\mathrm{m} \in \mathrm{M}$ is well-defined and R -homomorphism. Since M is semi-injective, there exists $\beta \in \mathrm{S}$, extension of α. $\beta\left[\mathrm{s}(\mathrm{m})\left[=\beta[\mathrm{i}(\mathrm{s}(\mathrm{m}))]=\alpha[\mathrm{s}(\mathrm{m})]=\mathrm{m}\right.\right.$, hence $\beta_{\mathrm{s}}=1_{\mathrm{M}}$ such that $\beta \in \mathrm{S}$, so $\mathrm{Ss}=\mathrm{S}$, which is a contradiction. This shows that $\mathrm{J}(\mathrm{S})=\{\mathrm{s} \in \mathrm{S} \backslash \mathrm{ker}(\mathrm{s}) \neq 0\}$. The other inclusion $\{s \in S \backslash k e r(s) \neq 0\} \subseteq \mathrm{J}(\mathrm{S})$ always holds .

(2) Since M is semi-injective, then there exists $g \in S$ such that $\mathrm{g}[\mathrm{s}(\mathrm{m})]=\mathrm{g}[\mathrm{i}(\mathrm{s}(\mathrm{m}))]=\mathrm{t}[\mathrm{s}(\mathrm{m})]$ where $\mathrm{m} \in \mathrm{M}$. Thus $\operatorname{Im}(\mathrm{s}) \cap$ ker $(\mathrm{g})=0$, in fact, if $\mathrm{x} \in \operatorname{ker}(\mathrm{g}) \cap \operatorname{Im}(\mathrm{s})$, then $\mathrm{x} \in \operatorname{ker}(\mathrm{g})$ and $\mathrm{x} \in \operatorname{Im}(\mathrm{s})$. This implies that $\mathrm{g}(\mathrm{x})=0$ and there exists $\mathrm{y} \in \mathrm{M}$ such that $\mathrm{x}=\mathrm{s}(\mathrm{y})$. Thus $0=\mathrm{g}(\mathrm{x})=\mathrm{g}[\mathrm{s}(\mathrm{y})]$ $=t[s(y)]=t(x)=0$, hence $x \in \operatorname{ker}(t)$. Since t is monomorphism, then $x=0$. Thus by definition (1.1.15) ker (g) $=0$, which implies that g is monomorphism.

(3) Since M is direct-injective, S is local provided that M is uniform [19, 41.22]. It follows that $\mathrm{J}(\mathrm{S})=\mathrm{W}(\mathrm{S})$ by (1) .
(4) Since s has a left inverse, then there exists $f \in S$ such that $f s=1_{M}$, note that f is onto and s is $1-1$, hence ker $(s)=0$, but M is uniform, then by (3) S
is local and by (1) ker $(\mathrm{s}) \neq 0$, then we have $\mathrm{s} \in \mathrm{J}(\mathrm{S})$, this implies that $1-\mathrm{s} \in$ $\mathrm{J}(\mathrm{S})$, so s is invertible .
(5) Since M is uniform, then by (3) S is local, so M is π-injective. Conversely, let U and V be submodules of M such that $\mathrm{U} \cap \mathrm{V}=0$. Since M is π-injective, then there exists $\mathrm{f} \in \mathrm{S}$ such that $\mathrm{U} \subset \operatorname{ker}(\mathrm{f})$ and $\mathrm{V} \subseteq \operatorname{ker}(1-\mathrm{f})$. But S is local, then either f or 1-f belongs to $J(S)$. If $f \in J(S)$, then $g(1-f)=1$ for some $\mathrm{g} \in \mathrm{S}$. Thus ker $(1-\mathrm{f})=0$, implies that $\mathrm{V}=0$. Other wise $\mathrm{U}=0$. Hence M is uniform .

Proposition 3.1.12 [20]: Suppose M is a semi-injective and π-injective module. If S is semiperfect, then $M=\oplus_{i=1}^{n} U_{i}$ where U_{i} is uniform and semi-injective for each i .

Proof : Since S is semiperfect and M is semi-injective, then $M=$ $U_{1} \oplus \ldots . . \oplus U_{n}$ where each end $\left(U_{i}\right)$ is local. Note that U_{i} is semi-injective. So by [19, 41.20] each U_{i} is π-injective. Thus by proposition (3.1.11(5)) we see that U_{i} is uniform.

Proposition 3.1.13 [20]: If $\operatorname{Soc}(\mathrm{M}) \subseteq^{\text {ess }} \mathrm{M}$, then

(1) $\mathrm{W}(\mathrm{S})=\operatorname{ann}_{\mathrm{S}}(\operatorname{Soc}(\mathrm{M}))$.
(2) $\mathrm{S} / \mathrm{W}(\mathrm{S})$ is embeded in $\operatorname{end}_{\mathrm{R}}(\operatorname{Soc}(\mathrm{M}))$ as a subring.

Proof : (1) Let $\mathrm{s} \in \mathrm{W}(\mathrm{S})$, then ker (s$) \subseteq{ }^{\text {ess }} \mathrm{M}$, so by definition of (1.1.17) $\operatorname{Soc}(\mathrm{M}) \subseteq \operatorname{ker}(\mathrm{s})$, hence $\mathrm{s}(\operatorname{Soc}(\mathrm{M}))=0$. Which implies that $\mathrm{s} \in \mathrm{ann}_{\mathrm{S}}$ (Soc (M)). On the other hand, let $\mathrm{s} \in \operatorname{ann}_{\mathrm{S}}(\operatorname{Soc}(\mathrm{M}))$ where $\mathrm{s} \in \mathrm{S}$, then $\mathrm{s}(\operatorname{Soc}(\mathrm{M}))=0$, hence $\operatorname{Soc}(\mathrm{M}) \subseteq \operatorname{ker}(\mathrm{s})$, so $\operatorname{Soc}(\mathrm{M}) \subseteq^{\text {ess }} \mathrm{M}$. thus ker $(\mathrm{s}) \simeq^{\text {ess }}$ M and $\mathrm{s} \in \mathrm{W}(\mathrm{S})$.
(2) For each $s \in S$, let $\varphi(s)$: $\operatorname{Soc}(M) \rightarrow \operatorname{Soc}(M)$ be defined by $\left(\varphi(s)_{(x)}=s(x)\right.$. Since $\operatorname{Soc}(\mathrm{M})$ is fully invariant in M , then $\varphi(\mathrm{s}) \in \operatorname{end}_{R}(\operatorname{Soc}(\mathrm{M}))$ and $\varphi: S$ $\rightarrow \operatorname{end}_{\mathrm{R}}(\operatorname{Soc}(\mathrm{M})$) is a ring homomorphism. Note that $\operatorname{ker}(\varphi)=\mathrm{W}(\mathrm{S})$, in
fact, $\mathrm{s} \in \mathrm{W}(\mathrm{S}) \Leftrightarrow \operatorname{ker}(\mathrm{s}) \subseteq^{\text {ess }} \mathrm{M}$, i.e., $\forall 0 \neq \mathrm{m} \in \mathrm{M}$, there exists $\alpha \in \mathrm{S}$ such that $\alpha(m) \neq 0$ and $\alpha(m) \in \operatorname{ker} \quad(\mathrm{s})$, hence $\mathrm{s}(\alpha(\mathrm{m}))=0$, implies that $\varphi[\mathrm{s}(\alpha(\mathrm{m}))]=0$. Thus $\mathrm{s} \in \operatorname{ker}(\varphi)$, therefore by first isomorphism theorem [10, p.56] $S / W(S) \cong \operatorname{end}_{R}(\operatorname{Soc}(M))$.

Proposition 3.1.14 [20]: If M is semi-injective and a self-generator and if $\operatorname{Soc}(\mathrm{M}) \subseteq^{\text {ess }} \mathrm{M}$, then
(1) $J(S)=a n n_{S}(S c o(M))$.
(2) $\mathrm{S} / \mathrm{J}(\mathrm{S}) \cong \operatorname{end}_{\mathrm{R}}(\operatorname{Soc}(\mathrm{M}))$.

Proof : (1) Since M is semi-injective and a self-generator, then by [18] $J(S)=W(S)$. Thus by proposition (3.1.13) $J(S)=\operatorname{ann}_{S}(\operatorname{Soc}(M))$.
(2) Since M is semi-injective, every R-homomorphism in $\operatorname{end}_{R}(\operatorname{Soc}(M))$ can be extended to an R-homomorphism in S. Then by (1) and proposition (3.1.13(2)) $\mathrm{S} / \mathrm{J}(\mathrm{S})$ is isomorphic to $\mathrm{end}_{\mathrm{R}}(\mathrm{Soc}(\mathrm{M})$) as a ring.

Since every projective module is self-generator, then we have
Corollary 3.1.15 : If M is semi-injective and projective and if $\operatorname{Soc}(\mathrm{M}) \subseteq^{\text {ess }} \mathrm{M}$, then
(1) $J(S)=\operatorname{ann}_{S}(\operatorname{Soc}(M))$.
(2) $\mathrm{S} / \mathrm{J}(\mathrm{S}) \cong \operatorname{end}_{\mathrm{R}}(\operatorname{Soc}(\mathrm{M}))$.

Proposition 3.1.16[20]: Let M be a semi-injective R-module.
(1) If $\operatorname{Im}(s)$ is a simple right R-module where $s \in S$, then $S s$ is a simple left S-module.
(2) If $s_{1}(M) \oplus \ldots . . \oplus s_{n}(M)$ is direct where $s_{1}, s_{2}, \ldots, s_{n} \in S$ then $\mathrm{S}\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}\right)=\mathrm{Ss}_{1}+\ldots+\mathrm{Ss}_{\mathrm{n}}$.

Proof : (1) Let A be a non-zero submodule of Ss and $0 \neq \alpha s \in A$. then S $\alpha \mathrm{s} \subset \mathrm{A}$. Since $\operatorname{Im}(\mathrm{s})$ is simple, ker $(\mathrm{g}) \cap \operatorname{Im}(\mathrm{s})=0$. Define $\mathrm{g}: \alpha \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{M}$
by $\mathrm{g}[\alpha \mathrm{s}(\mathrm{m})]=\mathrm{s}(\mathrm{m})$ for every $\mathrm{m} \in \mathrm{M}$. It is obvious that g is an R-homomorphism. Since M is semi-injective, then there exists a homomorphism $h \in S$ such that $h(\alpha s)=g(\alpha s)$. Therefore $h(\alpha s)=s, s \in S \alpha s$. It follows that $\mathrm{S} \alpha \mathrm{s}=\mathrm{Ss}$ and $\mathrm{A}=\mathrm{Ss}$.

(2) Let $\alpha_{1} \mathrm{~s}_{1}+\ldots+\alpha_{\mathrm{n}} \mathrm{s}_{\mathrm{n}} \in \mathrm{Ss}_{1}+\ldots+\mathrm{Ss}_{\mathrm{n}}$. For each i , defined $\varphi_{\mathrm{i}}:\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}\right)(\mathrm{M})$ $\rightarrow M \quad$ by $\varphi_{i} \quad\left[s_{1}+\ldots+s_{n}(m)\right]=s_{i}(m) \quad$ for every $m \in M \quad$. Since $\mathrm{s}_{1}(\mathrm{M}) \oplus \ldots \ldots \oplus \mathrm{s}_{\mathrm{n}}(\mathrm{M})$ is direct, φ_{i} is well-defined, so it is clear that φ_{i} is an R-homomorphism. Then there exists an R-homomorphism $\bar{\varphi}_{i} \in S$ which is an extension of φ_{i}. Then $\mathrm{s}_{\mathrm{i}}=\varphi_{\mathrm{i}}\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}\right)=\bar{\varphi}_{\mathrm{i}}\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}\right)$ $\in S\left(s_{1}+\ldots+s_{n}\right)$ for every $\mathrm{i}=1,2, \ldots, \mathrm{n}$. Consequently, $\alpha_{1} \mathrm{~s}_{1}+\alpha_{2} \mathrm{~s}_{2}+\ldots+\alpha_{\mathrm{n}} \mathrm{s}_{\mathrm{n}} \in \mathrm{S}$ $\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}\right)$. Hence $\mathrm{Ss}_{1}+\ldots+\mathrm{Ss}_{\mathrm{n}} \subset \mathrm{S}\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}}\right)$. The other inclusion always holds.

Proposition 3.1.17 [20]: Every duo and semi-injective module has the (SIP) and (SSP) .

Proof: Write $\mathrm{M}=\mathrm{s}(\mathrm{M}) \oplus \mathrm{K}$ and $\mathrm{M}=\mathrm{t}(\mathrm{M}) \oplus \mathrm{L}$ where K , L are submodules of M. Since M is duo, $s(M)=s(t(M) \oplus L)=s t(M)+s(L) \subset(s(M) \cap t(M))+$ $(s(M) \cap L)=(s(M) \cap t(M)) \oplus(s(M) \cap L) \subset s(M)$. Then $s(M) \cap t(M)$ is a direct summand of M. Now we write $M=s(M) \cap t(M) \oplus N$. Then $t(M)=t(M) \cap$ $(\mathrm{s}(\mathrm{M}) \cap \mathrm{t}(\mathrm{M}) \oplus \mathrm{N})=\mathrm{s}(\mathrm{M}) \cap \mathrm{t}(\mathrm{M}) \oplus \mathrm{t}(\mathrm{M}) \cap \mathrm{N}$, so $\mathrm{s}(\mathrm{M})+\mathrm{t}(\mathrm{M})$ $=s(M)+(s(M) \cap t(M) \oplus t(M) \cap N)=s(M)+t(M) \cap N=s(M) \oplus t(M) \cap N$. Since $s(M)$ and $t(M) \cap N$ are direct summands, $s(M)+t(M)$ is a direct summand of M by C_{3}-condition.

Definition 3.1.18[20]: A ring R is called semi-regular if $R / J(R)$ is regular and idempotents can be lifted module $J(R)$.

Remark 3.1.19[20]: R is semi-regular if and only if for each element $a \in R$, there exists $e^{2}=e \in R a$ such that $a(1-e) \in J(R)$.

Remark 3.1.20[20]: For every $s \in S / J(S)$, there exists a non-zero idempotent $\alpha \in$ Ss such that $\operatorname{ker}(s) \subset \operatorname{ker}(\alpha)$ and $\operatorname{ker}[s(1-\alpha)] \neq 0$.

Theorem 3.1.21 [20]: For a semi-injective module M, if S is semi-regular, then (3.1.20) holds.

Proof : Let $s \in S / J(S)$. Then there exists $\alpha^{2}=\alpha \in S s$ such that $s(1-\alpha) \in J(S)$. Then $\alpha \neq 0$ and $\operatorname{ker}(s) \subset \operatorname{ker}(\alpha)$. If ker $[s(1-\alpha)]=0$, then $g s(1-\alpha)=1_{M}$ for some $g \in S$ by the semi-injectivity of M. It follows that $\alpha=0$, a contradiction. Hence $\operatorname{ker}[s(1-\alpha)] \neq 0$.

Section 3.2 Fully Stable Modules

Recall that a submodule N of an R -module M is said to be fully invariant if $f(N) \subseteq N$ for each endomorphism f of M [21], we call M invariant if each of its submodules is fully invariant. Recall that a submodule N of an R-module M is said to be stable if $f(N) \subseteq N$ for each $\mathrm{f} \in \operatorname{Hom}(\mathrm{N}, \mathrm{M})$, and the module M is said to be fully stable if each submodule is stable [1]. In this section we study these notions in P.Q.-injective rings and fully stable

Remark 3.2.1 : It is clear that each fully stable module is fully invariant, but the converse is not true .

For example, Z as a Z -module is fully invariant, but it is not fully stable.

Note 3.2.2 : R is fully stable if and only if R is fully stabel as R-module .

Remark 3.2.3[1]:

(1) An R-module M is fully stable if and only if every cyclic submodule is stable.
(2)It is known that an R-module M is fully stable if and only if $\mathrm{ann}_{\mathrm{M}}$ $\left(\operatorname{ann}_{\mathrm{R}}(\mathrm{x})\right)=\mathrm{xR} \forall \mathrm{x} \in \mathrm{M}$.

A statement similar to the following statement is known for pointwise injective modules [3], we prove it for P-injective rings .

Proposition 3.2.4: Let R be a ring, then R is P-injective if and only if R is fully stabel.

Proof : By corollary (1.1.12(2)) $\operatorname{ann}_{R} \operatorname{ann}_{R}(x)=R x \forall x \in R$, then by the last remark. R is fully stable.

Recall that a submodule N of an R -module M is said to satisfy Baer criterion if for every R-homomorphism $\varphi: \mathrm{N} \rightarrow \mathrm{M}$, there exists an element r in R such that $\varphi(n)=r n$ for each n in $N[1]$.

Notice that the concepts of Baer condition and Baer criterion coincide for rings.

Clearly, every module which satisfies Baer criterion is fully stable.
The following result shows the relation between P-injective rings and Baer condition.

Proposition 3.2.5: Let R be a P-injective ring, then R satisfies Baer's condition for every principal ideal I of R .

Proof : Let $I=R x, x \in R$ and let $f: R x \rightarrow R$ be any R-homomorphism. Consider the following diagram

Since R is P-injective, then there exists $g: R \rightarrow R$ such that $g_{o} i=f$. Now $\forall \mathrm{t} \in \mathrm{I}, \mathrm{t}=\mathrm{rx}$ where $\mathrm{r} \in \mathrm{R}, \mathrm{f}(\mathrm{t})=\mathrm{f}(\mathrm{rx})=\left(\mathrm{g}_{\mathrm{o}} \mathrm{i}\right)_{(\mathrm{rx})}=\mathrm{g}[\mathrm{i}(\mathrm{rx})]=\mathrm{g}(\mathrm{rx})=\mathrm{rg}(\mathrm{x})=\mathrm{rx}$ $g(1)=t g(1)$, take $g(1)=y$, hence $f(t)=t y$ where $y \in R$.

Proposition 3.2.6: If R is P-injective ring, then for each ideals I and J in R with $\mathrm{I}+\mathrm{J}$ is principal, $\operatorname{ann}_{R}(\mathrm{I} \cap \mathrm{J})=\mathrm{ann}_{R}(\mathrm{I})+\operatorname{ann}_{R}(\mathrm{~J})$.

Proof : Let $x \in \operatorname{ann}_{R}(I \cap J)$. Define $f: I+J \rightarrow R$ by $f(a+b)=b x$ where $a \in I$, $b \in J$, f is well-defined. Since R is P-injective, then there exists $y \in R$ such that $\mathrm{f}(\mathrm{a}+\mathrm{b})=(\mathrm{a}+\mathrm{b}) \mathrm{y}=\mathrm{bx}$. In particular $0=\mathrm{f}(\mathrm{a})=$ ay holds $\forall \mathrm{a} \in \mathrm{I}$, this implies that $y \in \operatorname{ann}_{R}(I) . \forall b \in J, f(b)=b y=b x$, so $b x-b y=b(x-y)=0$, hence $x-y \in \operatorname{ann}_{R}(J)$. Now $x=y+x-y \in \operatorname{ann}_{R}(I)+a n n_{R}(J)$.

The converse of proposition (3.2.6) is not true.

For example, let $n z, m z$ be ideals in $Z, \operatorname{ann}_{Z}(n Z \cap m Z)=a n_{Z}(n m Z)=0$, also $\operatorname{ann}(n Z)+\operatorname{ann}(m Z)=\{0\}$, but Z is not P-injective.

Now we raise the following question: Is every P.Q.-injective module fully stable module?

The answer is No.
For example, Q as a Z-module is injective, hence P.Q.-injective, but Q as a Z-module is not fully stable.

However, we have the following
Proposition 3.2.7 : Let M be a multiplication R-module. If M is P.Q.-injective module, then M is fully stable.

Proof: It is enough to show that every cyclic submodule is stable. Let N be a cyclic submodule of M , let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{M}$ be any R-homomorphism. Sinec M is multiplication, then $\mathrm{N}=\mathrm{IM}$ for some idael I of R. Thus for each $n \in N, n=\sum_{i} r_{i} m_{i}, r_{i} \in I, m_{i} \in M$. Consider the following diagram, $\mathrm{g}_{\mathrm{o}} \mathrm{i}=\mathrm{f}$.

$\forall \mathrm{n} \in \mathrm{N}, \mathrm{f}(\mathrm{n})=(\mathrm{g} \circ \mathrm{i})(\mathrm{n})=\mathrm{g}(\mathrm{n})=\mathrm{g}\left(\sum_{i=1}^{n} r_{i} m_{i}\right)=\sum_{i=1}^{n} r_{i} g\left(m_{i}\right) \in \mathrm{IM}=\mathrm{N}$ where $\mathrm{r}_{\mathrm{i}} \in \mathrm{I}, \mathrm{m}_{\mathrm{i}} \in \mathrm{M}$. Hence N is stable, then by remark (3.2.3) M is fully stable

University of Baghdad
 College of science
 Department of Mathematics

On Principally Quasi-Injective Modules and Semi-Injective Modules

A Thesis
Submitted to the College of Science University of Baghdad in Partial Fulfillment of the Requirement for the
Degree of Master of Science in Mathematics.

By

Ali Karem Kadhim AL- Timimi

July 2005

Abstract

Let M be an R -module with endomorphism ring S . The module M_{R} is called principally quasi-injective, if every R -homomorphism from any cyclic submodule of M to M can be extended to an endomorphism of M. An R-module N is called M-principally injective, if every R-homomorphism from M -cyclic submodule K of M to N can be extended to M . An R-module M is called semi-injective if it is M-principally injective.

These concepts were studied by Nicholson, Yousif and wangwal. The main purpose of this thesis is to study principally quasi-injective modules and semi-injective modules. We give the details of proofs of known results, supply some example, and add few new results.

REFERENCES

[1]. M.S Abbas, On Fully Stable Modules, Ph.D. Thesis, College of Science, University of Baghdad, 1990.
[2]. E.P. Armendariz and J.K. Park, Self-injective Ring with Restricted Chain Condition, Arch. Math., 58(1992), 24-33.
[3]. S. Abdul-Kadhim, On Pointwise Injective Modules, M.Sc., Thesis, College of Science, Al-Mustansiryah University, 1999.
[4]. B. H. Al-Bahraany, Modules with the Pure Intersection Property, Ph.D. Thesis, College of Science, University of Baghdad, 2000.
[5]. N. S. Al-Mothafor, Sums and Intersections of Submodules, Ph. D., Thesis, college of Science, University of Baghdad, 2002.
[6]. G.F. Brikenmeier, On the Cancellation of Quasi-Injective Modules, Comm. in Algebra, 4(1976), 101-109.
[7]. V. Camillo, Commutative Rings Whose Principal Ideals are Annihilators, Portugaliae, Math., 46(1989), 33-37.
[8]. S. Chotchaisthit, When is a Quasi-Principally Injective module Continuous ?, Southeast Asian Bulletin of Math., 26(2002), 391-394.
[9]. K. R. Goodearl, Rings Theory. Non-Singular Rings and Modules, Marcel-Dekker, New-York and Basel, 1976.
[10]. F. Kash, Modules and Rings, A cademic, Prec, 1982.
[11]. Y.M. Mahdi, The Direct Sum Cancellation Properties for Modules, M.Sc. Thesis, College of Science, University of Baghdad, 2001.
[12]. S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London, Math., Soc, Lecture Notes Series, 1990.
[13]. A.C. Mewborn and G.N. Winton, Orders in Self-Injective Semiperfect Rings, J. Algebra, 13(1969), 5-9.
[14]. W.K. Nicholoson and M. F. Yousif, Principally Injective Rings, J. Algebra, 174(1995), 77-93.
[15]. W.K. Nicholoson, J.K. Park and M.F. Yousif, Principally Quasi-Injective Modules, Comm. in Algebra, 27(4) (1999), 1683-1693.
[16]. A. G. Naoum and N.S. Al-Mothafor, A note on Z-Regular Modules, Dirasat, 22(1995), 25-33.
[17]. A. G. Naoum, On the Ring of Endomorphisms of Multiplication Modules, periodica Math., Hungarica, 29(1994), 277-284.
[18]. N. V. Sanh , K.P. Shum, S. Dhompongsa and S. Wongwal, On Quasi-Principally Injective Modules, Algebra Colloquium 6(3), (1999), 269-276.
[19]. R. Wisbauer, Foundations of Module and Ring Theory, university of Düsseldorf, 1991.
[20]. S. Wongwal, On the Endomorphism Ring of Semi-Injective Modules, Acta Math., University Comenianae, 1(2002), 27-33.
[21]. G. V. Wilson, Modules with the Summand Intersection Property, Comm. in Algebra, 14(1986), 21-38.

