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Introduction

Let R be a commutative ring with 1 and M is a unitary right R-module
and S=Endgr(M). In [15] Nicholson , Park and Yousif studied principally
quasi-injective modules where M is called principally quasi-injective
module if each R-homomorphism from a principal submodule of M to M
can be extended to an endomorphism of M, a ring R is called principally
injective if R is a principally quasi-injective R-module [15]. In [21]
Wongwal studied M-principally injective modules where an R-module N is
called M-principally injective if every R-homomorphism from M-cyclic
submodule K of M to N can be extended to M. An R-module M is called
semi-injective if it is M-principally injective. In [8] Chotchaisthit asks the
following question: for an R-module, when is a quasi- principally-injective
module continuous?. An R-module M is called continuous if M has
c;-condition and c,-condition where M is said to have the c;-condition if
every submodule of M is essential in a direct summand of M [8], and it has
C,-condition if every submodule of M which is isomorphic to a direct
summand of M is itself a direct summand of M [15].

The main goal of this thesis is to study principally quasi-injective
modules, semi-injective modules and their endomorphisms rings. Further we
examine their relations with other known concepts like, local rings
,uniform modules, duo module, self-generators, summand intersection
property, summand sum property. We give the details of known results and
some examples. We also add few new results (to the best of our knowledge).

The material presented in this thesis is organized in three chapters.
Each of chapters one and two is divided into three sections and chapter three

consist of two sections.



In section 1, chapter 1, we study different characterization of principally
quasi-injective modules (Theorem (1.1.9).
In section 2, we study the Jacobson radical of S and related concepts such as
singularity (Theorem (1.2.10). Further we look at the properties of the ideal
W(S)={weS\ 1-pw is monomorphism for all peS}, in principally
quasi-injective modules (proposition(1.2.5)).
In section 3, we study further results on principally-injective rings and some
notions as weakly injective.

In chapter two we study principally quasi-injective modules and their
relations to other classes of modules.
In section 1, we study the relation between principally quasi-injective
modules and some properties as a summand intersection property, summand
sum property and cs-condition, these properties can be found in [15], [5], [4].
In section 2, we study uniform submodules. Many of the ideas in this section
trace back to camillo [7].
In section 3, we study the relation between principally quasi-injective
modules and continuous modules. The main result of this section appeared
in (proposition (2.3.1)). We also study duo principally quasi-injective
(proposition (2.3.7)).

In chapter three we study semi-injective modules and fully stable
modules.
In section 1, we look at the relation between semi-injective modules with
n-injectivity and direct injectivity (Theorem (3.1.11)).
In section 2, we study fully stable and fully invariant modules in principally

quasi-injective modules and rings.
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CHAPTER ONE
PRINCIPALLY QUASI-INJECTIVE MODULES AND
PRINCIPALLY INJECTIVE RINGS

Introduction

Let M be an R-module with endomorphism ring S. As we mentioned
in the introduction, an R-module M is called principally quasi-injective
module if each R-homomorphism from a principal submodule of M to M
can be extended to an endomorphism of M. In other words, the following

diagram is commutative:

The ring R is called principally injective if R is principally
quasi-injective as an R-module [14].

The concept of principally quasi-injective modules was introduced
in 1999.
In this chapter we study principally quasi-injective modules and
principally injective rings. We recall the known results about these
concepts and we give the details of the proofs of these results, we also
add few new results (to the best of our knowledge).

This chapter consists of three sections.
In section 1, we recall the definitions of principally quasi-injective
module and principally injective ring. More over, we recall some

properties about principally quasi-injective modules.
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In section 2, we study the Jacobson radical of the ring of endomorphism S
of a principally quasi-injective module and its relation with other
concepts.

In section 3, we study principally injective rings. Some of the results
about these rings are corollaries to corresponding results on principally

guasi-injective modules.
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Section 1.1 Principally Quasi-Injective Modules:

In this section we study principally quasi-injective modules and
their endomorphism rings. Most of the results of this section appeared in
[14],[15]. However, we give the details of the proofs and add few new
results (to the best of our knowledge).

Recall that an R-module M is injective if given any

monomorphism f : A— B and any homomorphism g:A— M, there
exists a homomorphism h:B — M such that ho f =g. In other words

the following diagram is commutative where A, B are R-modules.
f
A —>B
gl /
M

Equivalently, an R-module M is injective if for every ideal Lr of Rg and

any homomorphism g: L — M, g can be extended to a homomorphism

h:R— M [10, p.130].

It is well known that Q as a Z-module is injective[11], but Z as a
Z-module is not injective module. In fact, let f:2zZ —z be defined by
f(2n)=3n VneZ .Ifthereis h: Z — Z which extends f,hof =i,then
h(f (2n)) = h(3n)= 2n=i(2n)

In particular, if n=1, then h(f(2))=h(3)=3=2=i(2). Hence

hof =i
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Definition 1.1.1 [6] :

An R-module M is said to be quasi-injective if any homomorphism

f:A—> M where A is a submodule of M, can be exteneded to an

endomorphism h: M — M i.e., the following diagram is commutative,

where i is the inclusion map.

i
A —>M

fl/

M

A ring R is called self-injective (quasi—injective) if it is a
quasi-injective R-module.
It is clear that every injective module is quasi-injective so as every simple
module. An example of quasi-injective Z-module which is not injective
Z-module is Z/2Z, it is simple but it is not injective because it is not
divisible.
Definition 1.1.2 [15] :

An R-module M is called principally quasi-injective if each

R-homomorphism from cyclic submodule of M to M can be extended to

an endomorphism of M, i.e., the following diagram is commutative,
hoi=f i
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Note 1.1.3: We use the notation P.Q.-injective for principally

quasi-injective.

Definition 1.1.4 [14] :

An R-module M is called principally injectuive if each

R-homomorphism a:aR — M such that a € R, extends to R , i.e., the

following diagram is commutative, @ ci=« .

0 >aR >R

Remarks and Examples 1.1.5 :

(1) It is clear that every injective module is principally injective.

(2) If every cyclic submodule of M is a summand then M is
P.Q.-injective module, in fact, XR< M, xR is a direct summand
of M, there exists B<M such that M =xR® B. Now let
o.: XR — M be a homomorphism. Define a:XR®B — xR® M

by a(xr,y) =a(xr), itis clear that a is an extension of «.

(3) Recall that a module M is called Z-regular if every cyclic
submodule is a projective and direct summand [16]. Thus every
Z-regular module is P.Q.-injective module.

(4) The ring R is called principally injective if R is a P.Q.-injective
R-module [15]. Hence every (von Neuman) regular ring R which is
not quasi-injective is an example of a P.Q.-injective module that is
not quasi-injective.

Note 1.1.6: We will use P-injective for principally injective
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Remark 1.1.7: Let S=endg (M)=the ring of R-endomorphisms of M. If

M is a right R-module, then M can be made into a left S-module as
follows.

Define @ :SXM — M by ®(f,m) = f(m), then

(1) (fl + fz)(m) = fl(m)+ fz (m)

(2) f(m+n)=f(m)+ f(n)

(3) (f,f,)(m)= f (f,(m)), where f,f,f,eS, mneM

v T2

Note 1.1.8: Let M be an R-module, we fix some notation:

(1) ann,, (r)={meM \'mr=0}.

(2) ann, (m) = {r e R\mr =0}.

(3) sm={f(m)\ f S}.

Theorem 1.1.9:[15]: Given a module Mg with S=end(Mg), the

following are equivalent.

(1) Vme M, every R-homomorphism mR — M can be extended to an

endomorphism in S, i.e., M is P.Q.-injective module.

(2) ann,, ann,(m)=SmVmeM .

(3) If anny(m) < ann, (n) where m,n e M then Sn < Sm.

(4) Vm e M, if the R-homomorphism «, f:mR — M are given with g
Is monomorphism, then there exists y:M — M such that yo f=« , i.e.,

the following diagram is commutative:

s

0 —>mMR—> M

M
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Proof. 1=2 Let f(m)eSmwhere feS. If mr=0, then

0= f(mr)= f(m)r. This implies that f(m)eann,, ann, (m) , hence
Smcann,ann,(m). To show the opposite inclusion, let
n e anny,anny,(m). Define y:mMR - M by y(mr)=nrvreR. y is
well-defined, in fact, let mr, =mr, r,r,eR, mr,—mr, =m(r,—r,) =0,
then r, —r, e anny(m), hence n(r, —r,) =0, nr, —nr, =0, implies that
nr, =nr,. By (1) yextendsto y €S.

Now n=y(m)=( yei) (m)= y[i(m)]= y(m) €Sm. Hence anny (anng(

m)cSm. This proves(2)

2 =3 Let f(n)esn. By (2) Sn=ann,ann,(n), then f(n) e ann,,ann,(n).
Since ann. (m) < ann. (n), then anny (anng(
m)canng(n))=annyanng(n)cannyanng(m). This implies that f(n)e

annyanng(m). Hence by (2) f(n)eSm=annyanng(m). This means Snc Sm.

3=>4 Since S is monomorphism, we have ann.(fm) < ann,(am), in fact,
let reann,(Bm) , then pm)r=pamr)=0 . Thus mreker S hence
mr=0, SO0 amr=amr=0. Which implies reann,(am),
soann,(Am)c ann, (am). By (3)Sa(m) =S A(m) . Then there exists
ye S such that a (m) = y[B(m)] as required.

4 =1 Take #:mR — M be the inclusion in (4). Then by (4) there exists
y:M — M such that the following diagram is commutative. Hence

o.: MR — M extends to an endomorphism in S. This means proving (1).
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Proposition 1.1.10 [15] : Let M be an R-module, then for each

meM,a €S,Sa +anng (m) < ann [ker(a) "mR].

Equality holds if M is P.Q.-injective module.

Proof. Suppose that e ann [ker(a) "mR]
Claim ann,(am) < ann,(fAm) , in fact, let r € ann, (am) , i.e., a(mr) =0

= a(m)r. Therefore, mre ker(a) NmR.. Since S < anns [ker (a) N MR],
then  g(mr)=p(m)r=0. Hence reann,(pm). Since M is
P.Q.-injective, then by theorem (1.1.9(3)) A(m)eSa(m).Say
B(m)=ya(m) where yeS, so B(m)—ya(m)=(f-ya)m)=0 ,
hence B —yaeann,(m), thus peSa+anng(m). This means anng[ ker
(&) " mR] < Sa+ anng(m).

Before the next result we need the following definition [15]. An
R-module M is said to be principally self-generator if for every element
meM, there exists an epimorphism A:Mg—>mR, i.e., there exists m;eM
such that A(my)=m.

For example, every cyclic module is principally self-generator,in

particular Ry is principally self-generator R-module. More over every

Z-regular module is principally self-generator but Q is not[16].

Proposition 1.1.11 [15] : If M is a principal module which is

principally self-generator with S=end (Mg), then the following conditions

are equivalent.
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(1) Mg is P.Q.-injective module .

(2) anng[ker(a) NmR]=S«a+anns(m) for all €S and meM
(3) anns[ker(a)]=Sa for all aeS.

(4) ker(a)cker(p) where a, S € S, implies that S € Sa.

Proof. 1=2: This follows from proposition (1.1.10)

2=>3 If M=m(R , take m=m, in (2), i.e.,
anns[ker(a) NnmyR]=Sa +anns(m,). Let feanns[ker(a) NmyR], then f(x)=0
where xeker(a) and x=mqr where r eR, f(x) = f(m,r)= f(m,)r=0, implies

that r=0. This gives anns[ker(a) ]=Sa .

3=>4 This is because anns[ker(a) ]= {B<S\ker(a)cker(p)}, in fact ,
Pla(m)]=0, implies a(m) eker (£). But a(m)=0, hence m € ker (a)
ker(p),i.e., anns[ker(a)]={ S\ A a(m)]=0}. By (3), Sa = anns [ker ()],
implies that fSeSa.

4=1 Let ymR—M be R-homomorphism where meM. Now we will

take M=m,R and choose a, £in S such that m=a(m,) and y(m)=£(m,), we
claim that ker(a)cker(p), in fact, if keker(a), write k=m,r such that ke M,
reR. Now Ak)= A mor)= Amo)r = y(m)r= yla(mo)r]= yla(mor)]= yla(k)]=
y(0)=0. Thus keker (f) and the claim is proved. Hence (4) gives f=¢pa
for some ¢ €S . Therefore p(m)=p[a(my)]=H(My)=y(m). This shows that ¢

extends 7.

If My is R, the last proposition takes the following form.
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Corollary 1.1.12 [14] : The following conditions are equivalent for a

ring R .
(1) R is P-injective as R-module.
(2) anng anng (a)=RaforallainR
(3) anng (b)c anng (a) where a, b in R, implies RacRb.

(4) anng [bRM anng (a) ]= anng (b)+Ra for all a,b in R

Proof. 3=4): Let xe anng [bRM anng (a) ].

Claim. anng (ab) < anng(xb), in fact, let re anng (ab) , i.e,
(ab)r=0=a(br). Therefore breanng (a) » bR. Since xe anng[bRnann(a)],
then xbr=0=(xb)r. Hence reanng(xb). So by (3) xbeRab, implies xb=rab
where reR.Thus xb-rab=0=(x-ra)b. Hence x-racanng(b) and so

xe anng(b)+Ra.

Proposition 1.1.13 [15] : Let Mg be a P.Q.-injective module with

S=end (Mg) and letm,n € M .
(1) If nR is an image of mR, then Sn embeds in Sm
(2) If mR embeds in nR, then Sm is an image of Sn
(3) If mR=nR, then Sn=Sm.

Proof : Assume that A:mR—nR is any R-homomorphism, write
A(m)=na where aeR and define ¢:Sn—>M by ¢[o(n)]=(an)a=a[A(m)] for
all aeS. If AeS extends A, then o[a(n)]=a[M(m)]=
al Ai(m))]=al A(m)]eSm, so @:Sn—>Sm is S-homomorphism. Now to
prove (1), if A is epimorphism, then n=A(mb) such that beR.

Given a(n) eker ¢, thus a(n)=a[A(mb)]=[aA(m)]b which implies that
¢[a(n)]b=0.b=0. Hence Sn embeds in Sm. To prove (2), if A is

monomorphism, then anng(Am)canng(m), in fact, let reanng(Am), then

10
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A(M)r=r(mr)=0, so mreker(X), but A is monomorphism, then mr=0,
hence reanng(m). So by theorem (1.1.9(3)) meSA(m), but SA(m) <
Image ¢. Thus m eimage ¢ . This means Sm is an image of Sn.

(3) Follows immediately from (1) and (2).

As a special case of the last proposition we have

Corollary 1.1.14 [14] : Let R be a P-injective ring and a, b eR

(1) If aR is an image of bR, then Ra embeds in Rb.
(2) If bR embeds in aR, then Rb is an image of Ra.

Now we need the following definitions.

Definition 1.1.15 [10,p.106] : Let A be a submodule of an R-module

M, it is said that M is essential extension of A or (A is an essential
submodule of M, i.e., Ac*™ M or A<M) or (Ais larger in M) if for every

non-zero submodule U of M, AnU=0.

Example 1.1.16: Z; as a Z-module. If A={ o, 2, 4}, then A£ Zs.
e .

Butif A={ 0, 2}<Z, then A < Z,.
e

Definition 1.1.17 [10,p.212 ]: Let M be an R-module the sum of all

minimal (simple) submodules of M is called the socle of M, equivalently,
the intersection of all essential submodules of M, it is denoted by Soc(M).
If M has no simple submodule then we put Soc(M)=0. If Soc(M)=M, then

M is called semi-simple module.

11
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Example 1.1.18: Z; as a Z-module.
Soc(Zg)={ 0, 2 , 4}+{ o, 3}. Since { 0, 2 , 4}, { o, 3} have no

proper submodule except { o}, { 0, 2 , 4}, and { 0}, {0, 3 },
respectively, then Soc(Zs)=Zs. But Soc (Z,) ={ o, 2 }, hence { o, 2 }
the only proper submodule of Z,. Therefore Z, as a Z-module is not
semi-simple.

The following result relates Soc(Mg) to Soc(S™).

Proposition 1.1.19 [15]: Let Mg be a P.Q.-injective module with
S=end(Mg).
(1) If mR is a simple R-module, meM, then Sm is a simple S-module.

(2) Soc(Mg) = Soc(SY).

Proof: (1) Consider the following diagram,

0 >0(mR) >M

We may assume o#0. Since mR is simple, then a:mR—a(mR) is an
isomorphism, let y: a(mR) —mR be the invers of a, i, i are inclusion
maps from mR, a(mR) to M respectively. Since M is P.Q.-injective
module,then  there  exists yeS  that extends y.Now
ylam)]= y[i(a(m)= ify(e(m))]=y[a(m)]=(yox)(m)=m.HencemeSa(m ).
(2) This follows from (1).

12
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Proposition 1.1.20 J15] : Let Mg be a P.Q.-injective module

with S=end(Mg), and let my,m,,...,m, be elements of M.
(1) If Sm®.....® Sm, is a direct sum, then any R-homomorphism
a:mR®....®& m,R— M has an extension in S.
(2) If mR®...® myR is a direct sum, then S(m,+...+m,)= Sm;+...
+Sm,.

Proof: (1) Let o; and B denote the restriction of o to m;Rand
(my+...+m,)R respectively and let o; and S extend o; and B to M.
Then = Am)= AEim)=a(Zim)=Zio(m;)=%; a(m;). Since ®Sm; is a
direct , we obtain Am)= o(m;), in fact, Am)+...+ Am,)=

a(m)+...+ a(my), so  Am)- a(m)= a(my)+...+ a(m,)- Amy)-...-

AMy) €SmMi®Sy=0,  then Amy)- o(m)=0  [10,p.30],
hence A(my)= a(m,). By the same way we get A(mi)= o(m;)=a(m),
so MBextends a .

(2)Define o;: (my+...+my)R—M by ai[(m+...+my)r]=mir ¥V reR .
Then o; is well defined. Since M is P.Q.-injective module, then there
exists a;eS that extends o; , hence m; = q; (Zimy)= o [i(Z m)]=

&(Zimi)eS(Eimi) and it follows that X;SmicS(Zim;). The reverse
inclusion always holds.

To prove the next result we need the following defintion [21]. A
submodule N of an R-module M is said to be fully invariant if for each
endomorphism f:M—M, f(N)cN.

For example every submodule of Z as a Z-module is fully
invariant. But Z as a submodule of Q is not fully invariant. More over, it
Is known that every submodule of a multiplication R-module is fully

invariant [17].

13
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Proposition 1.1.21 [15] : Let Mg be a P.Q.-injective module with

S=end (Mg), and let A, B;, By, ....Bn be fully invariant submodules of
Mg. If Bi®....®B, is a direct, then AN(B:®.....®B,)=(AnB)®...®
(ANB,).

Proof : It is known and is easy to check that @; (ANB;))cAN(D; B).

Now consider the following diagram.

i .
0 —> _?biR—'> M
i=

Let a= %, b; e AN[®;B;] and let my : _c-; biR—byR be the projection
map and i, i are inclusion maps from gab;l?eland bR to M respectively.
Sinec @Sb; is a direct sum, then by prpialsition (1.1.20) each m, has an
extension min S, i.e., mw [i(@)]= i[n(@)]. Since A is fully invariant,
then m (@)= m [i(@)]= i[m (@)]= T (a)=bxe ANBy for each k whence

a €@|(AﬂB|)

Proposition 1.1.22 [15] :  Every summand of a P.Q.-injective

module is a gain P.Q.-injective module

Proof : Let M=A®B be a P.Q.-injective module and let X be a

principal submodule of A, with f a homomorphism of X into A, let iy and

14
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ia be the inclusion maps of X in A and A in M respectively and ma:

M—A be the projection map .Consider the following diagram.

X—2sA 12 s\

f -
v g
A

Since M is P.Q8.-injective module , then there exists a
homomorphism g:M—M such that goia0i,=i0f.

Define g=ma.Qoia, then g is a homomorphism of A into A. Note that g

extends f, that is ( Goi)o= 0lix OV1= J)=G0)=(ach)in=F(x).

N

15
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Section 1.2 The Jacobson Radical and Related Concepts

Recall that the intersection of all maximal submodules of Mg is
called the Jacobson radical of M it is denoted by J(M). If M has no
maximal submodule, then we put J(M)=M[10,p.213].

For S=end(Mg), we define J(S) to be the Jacobson radical of the
8S2-module. Recall that an R-module M is called singular module if
Z(M)=0 where Z(M)={xeM\ann(x) < R} and non-singular if Z(M)=M
[9]. More over recall that W(S)={WeS\ker(w)§M} where S=end(Mg)
[15]. In this section we study the relation between J(M), Z(M) and W(S).

Examples 1.2.1 :
(1) J(Z)={ 0, 2}, but J(Zs)=0.

(2) Q as a Z-module is singluar module, i.e., ifo=xeQ, ann(x)§ Z, then

Z(Q)=0, on the other hand Z, as a Z-module is non-singular
module, i.e., Z(Z,)=Z,.

Lemma 1.2.2 [12,p.38]: Let M be an R-module with S=end(Mg).
Then W(S)={weS\ ker(w)%M} Is a two sided ideal in S.

Proof: Let a ,b eW(S) and aeS. Then kera <M and kerb < M. Since
ker anker b < ker (a-b) and ker a < ker aa, ker (a-b) and ker aa are
essential submodules of M and consequently , a-b eW(S) and accae W(S).
Let N={neM\a(n)e ker a}. Then it is clear that Nse M and N< ker aa..
Hence aoc.e W(S).

Remark 1.2.3 : If weW(S), then ker (w) m ker (1-Aw)=0, for all B<S.
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Proof : Let x eker (w) and xeker (1-Aw) then w(x)=0 and (1-/w) =0,

hence x=0.

Remark 1.2.4 [15] : W(S)c{weS\1-Aw is monomorphism for all
peS}.

Proof : Since weW(S), then ker (w)~ker (1-Aw)=0 and ker W%l\/l, so by
definition (1.1.15).Ker (1-pw) =0. Therefore 1-Aw is monomorphism.
Thus W(S)c{weS\1-pw is monomorphism for all peS}.

The following proposition shows that equality in (1.2.4) holds for

P.Q.-injective module.

Proposition 1.2.5 [15] : If Mg is a P.Q.-injective module then W(S)=
{ weS\1-Aw is monomorphism for all peS}.

Proof: Assume that 1-w is monomorphism for all S, and let ker (w)
NMR=0, meM. then anng(wm)canng(m), in fact, let reanng(wm), then
w(mr)=w(m)r=0. Hence mreker (w) mmR=0. Thus mr=0, so reanng(m).
By theorem (1.1.9(3)) meSwm. i.e., m=4(wm)=m-Awm=(1-,w)(m)=0.
This means that meker (1-pw) for some peS, but (1-Aw) is
monomorphism, so m=0. This proves that we W(S). The other inclusion

follows from the last remark.

Before the next lemma we need this definition.

Definition 1.2.6 [15] : The module Mg is called a kasch module if

every simple subguotient of M embeds in M.

17
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For example, let M=Z¢=2Z,®Z;. Since Z¢/Z, =Z5 , then Z; embeds
In Zg, i.e., there exists a monomorphism f:Z;—M, similary for Zs/Z;. But
Z as a Z-module is not kasch module.
For example Z/2Z=Z, does not embeded in Z.

We need the following lemma to prove the next theorem.

Lemma 1.2.7 [15] : Let Mg be a P.Q.-injective module which is a

kasch module. If T is maximal ideal of R (it is denoted by T™ R), then
anny(T)=0 if and only if anng(m)cT for some 0=meM. In this case

anny(T) is a simple left S-module.

Proof : If Ozmeanny(T), then mT=0, hence Tcanng(m)#R, so
T=anng(m) by the maximality of T, which implies
anng(m)cT.Conversely, assume anng(m)cT where 0meM, observe first
that mR=mT, in fact, if m.I=mt where teT, then m(1-t)=0, hence

1-teanng(m)cT, implies that 1-t+teT, so leT contradiction with

. X mR :
maximality of T. Hence choose — ™ ——. As M is kasch. Let
mT mT
mR . :
6: — —> My be a monomorphism and write m,=6(m+x). Then
X

0£myeanny(T), implies that m,T=6(M+x)T=6(MT+x)=6(0+x)=6(x)=0.
Finally, let 0#m;eanny(T), then m;T=0, hence Tcanng(m;) whence
T=anng(m,). Thus anny(T)= annyanng(m;)=Sm;by theorem (1.1.9(2)).

Hence anny(T) is simple as a left S-module, that proves the lemma

Theorem 1.2.8 [15] : Let Mg be a P.Q.-injective module which is a
kasch module with S=end(Mg). Then
(1) Soc(Mg)=Soc(SMcannu(J(S)) .

18
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(2) Soc(SM)c = sM.

Proof : By proposition (1.1.19(2) we have Soc(Mg)=Soc(S™) we show
Soc(SM)canny(J), in fact, let s¥ be a simple submodule of the S-module
M. Since every simple submodule is cyclic, then Ns is cyclic, in
particular, Ns is finitely generated. Since every finitely generated module
has maximal submodule [10,p.28] , but Ns is simple, then either JNs=Ns
contradiction with maximality or JNs={0}, then JNs=0. Hence
Nseanny(J). Now let 0zmeM, if anng(m)cT™R, then
anny(T)cannyanng(m), in fact, let xeanny(T), then XT=0 where xeM,
we want to show that xeannyanng(m), i.e., xr=0 where rm=0. Since
Tcanng(m), then tm=0. Hence xr=0, implies that xeannyanng(m). Thus
by theorem (1.1.9(2)) anny(T)< annyanng(m)=Sm. As anny(T) is simple
by lemma (1.2.7), this shows that Soc(SM)c=**SM. This proves (2). Finally
to show that Soc(S™)cSoc(M), let Sm be a simple module and let
anng(m) < T <™ R. Since anny(T) # 0 by lemma (1.2.7), then
anny(T)cannyanng(m)=Sm, but Sm is simple, then Sm = anny(T). Thus
Tc annganny(T) = anng(Sm) = anng(m) # R, it is clear that R/anng(m)
~mR. Since T is maximal, anng(m)=T whence mR=R/T is simple. It

follows that Soc(S™)cSoc(Mg).

Proposition 1.2.9 [15] : Let Mg be a P.Q.-injective module with
S=end(Mg). Then
(1) Z(Ss)cW(S) and J(S)cW(S).

(2) If every monomorphism in S has a left inverse then W(S)cJ(S).

19
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Proof :

(1) Suppose ae W(S)-Z(Ss), then ker(a)ﬂeMR, thus ker(a)~»mR=0 where
0#meM. Hence o|nr:mMR—M is monomorphism, then by theorem
(1.1.9(4)) there exists S:M—M such that (fra)=1,r Which implies (1-
po)m=0. Thus meker (1-po), hence ker (1-po)=0 contradicting
proposition (1.2.5). Hence Z(Ss)cW(S)

0 —>mMR—2>M
1
l %
M

(2)V weW(S), ker (w)nker (1-pw)=0 for all SS by remark (1.2.3), thus
if ker(1-pw)=0, then 1-Aw is monomorphism. Thus by hypothesis, 1-Aw
has a left inverse, so by [10, p.220] , weJ(S). Hence W(S)J(S).

Theorem 1.2.10 [14] : If R is P-injective ring, then J(R)=Z (RR)

Proof : If a €Z(R), then ann(a)seR. More over, it is easily seen that
ann(1-a)=0 . Hence by corollary (1.1.12(2)) R=ann ann (1-a)=R(1-a) and
thus R=R(1-a) which shows that Z(Rr) <J(R). Conversely, if acJ(R) we
show that bRnann (a)=0 where beR, implies that b=0. But by corollary
(1.1.12(4)) anng(b)+Ra=anng[bRNann (a)]=R, so ann (b)=R.

Proposition 1.2.11 [15] : Let Mg be a P.Q.-injective module with
S=end(Mg). If M is non-singular, then w(S)=J(S)=0.

Proof : By proposition (1.2.9) J(S)cW(S), thus it is enough to show
that W(S)=0. If weW(S), then ker(w)geMR.Since M is non-singular, then
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by [9] M has no proper essential submodule, which implies that
ker(w)=Mgr and w=0 .

Definition 1.2.12 [15] : A module Mg is said to satisfy the

C,-condition, if every submodule of M that is isomorphic to a direct
summand of M is itself a direct summand of M, i.e., N<M, N=K where
M=K®J and J<M, then M=N®L where L<M.

Recall that an R-homomorphism f:A—B (where A and B are two
R-modules) is said to split if there exists an R-homomorphism g:B—>A
such that gof=l, [10, p.115] .

Now we show that there exists a relation between the C,-condition

and cyclic P.Q.-injective modules.

Proposition 1.2.13 [15] : Let Mg be a P.Q.-injective module with
S=end(MR).

(1) If N and K are isomorphic cyclic submodules of M and K is a

direct summand, then N is also a direct summand.

(2) Every cyclic P.Q.-injective module satisfies the C,-condition.

Proof : Since a direct summand of a cyclic module is cyclic, it is enough
to prove (1), now let 6:N—K be an isomorphism and n:M—K be the
projection. If o:M—M is an extension of o, put o=c",1, 5:M—N.

Thus  o(n)=keK, so a(n)=c"[n( o(n)]=c"[n( o(i(n)))]=
o [n(o( i(M))]=o"[(c(n)]=0"[n(K)]=c"(K)=c"[c(n)]=(c"sc)w=n.
Hence the inclusion map N—M splits, i.e., a,i=1y

i
a > M —=

0—>N o>

> K >0
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This means, the sequence is split. Hence by [10, p.116] N is

isomorphic to a direct summand of M. This proves (1).

The following lemma appeared in [19, 41.22].

Lemma 1.2.14 : Let Mg be any module with S=end(Mg) . If M has
C,-condition, then W(S)cJ(S).
The following proposition is known for quasi-injective modules.

Proposition 1.2.15 [15] : If Mg is a cyclic P.Q.-injective module, then
J(S)=W(S).

Proof : Since M is P.Q.-injective module, then by proposition (1.2.9(1))
J(S)cW(S). Since M is cyclic P.Q.-injective module , then by proposition
(1.2.13(2)) and lemma (1.2.14) W(S)cJ(S). Hence W(S)=J(S).

Proposition 1.2.16 [15] : Let Mg be a principally self-generator with
S=end(Mg) . Then Z(Ss)=W(S).

Proof : Let weW(S). Given 028<S we have ker (W)nA(M)=0, thus
there exists 0=/(m,)eker(w), i.e., w[f(m,)]=0 . Since M is principally
self-generator, then my=A(m;) where A:M—>myR, so A(my)=AA(Mm,)].
This means g A=0, but wpA=0 because wprL(M) < wp(m,R) =wA(m,)R
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=0 , hence 0zpfArecanns(w)NgS, proving that weZ(Ss). Conversely, if
weZ(Ss) and 0=m,eM, we must show that ker (w)~m,R=0. Since M is
principally self-generator, then there exists A:M—m,R—0 . Then A0, so
anns(w)MAS=0 .

Put wAp=0, i.e., AfBecanng(wW)NAS for some peS where Ap#0, let
Apmy)=0 where m;eM, we have Apf(mMm)er(M)=m,R, so write
Apmy)=mea V aeR. Then w(mya)=w[AS(m;)]=0, so w(m,a)=0, hence

0£moacker(w)mmyR. This shows that we W(S).

Proposition 1.2.17 : Let Mg be a P.Q.-injective module. If M is cyclic,
then Z(Ss)cJ(Ss).

Proof : Since M is P.Q.-injective module, then by proposition (1.2.9(1))
Z(Ss)cW(S). More over by proposition(1.2.13(2)) M has C,-condition, so
by lemma (1.2.14) W(S)cJ(S). Hence Z(Ss)cJ(Ss) .
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Section 1.3 Further Results On Principally Injective Rings

In this section we give further results on principally injective rings.

For reference see [14].

Recall that the ring R is principally injective if it is principally

injective as an R-module.

Example 1.3.1 [7] : Let R be the ring generated over the field Z, by

variables x;, X, ...where x’= 0 and x’=x; for all ij . Then R is

commutative, principally injective , but not injective.
A statemenet similar to the following statement is known for

pointwise injective modules [3], we prove it for P-injective rings.

Proposition 1.3.2 : Let R be a ring in which every cyclic R-module is

P-injective, then R is regular ring.
Proof : For any beR, consider the following diagram.

0 —>bR I—)R

.l%

bR

Where 1:bR—DbR is the identity R-homomorphism and i:bR —R
the inclusion map. Since bR is P-injective , then there exists g:R—bR
such that [I(b)=(g.i)(b), hence b=I(b)=(g.i)) (b)=g(b)=g(1)b. Since
g(1)ebR, then g(1)=ba for some aeR. which shows that b=bab.
Therefore R is regular ring.

The next result shows that the C,-condition and Cs-condition [14]

hold in a P-injective rings. Where a module M is said to satisfy the
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Cs-condition, if whenever N and K are direct summands with NnK=0,

then N+K is also a direct summand [15] .

Theorem 1.3.3 [14] : Let R be a P-injective ring and let a, beR.

(1) If aR=bR and bR is a direct summand of R, then aR is a direct
summand of R.

(2) If each of aR and bR is a direct summand of R and aRnbR=0,
then (aR®bR) is a direct summand of R.

Proof :

(1) This follows from proposition (1.2.13(1)).

(2) Since aR is a direct summand of R, then aR=eR with e’=e, so that
aR®bR=eR®(1-e)bR. Hence (1-e)bR=bR, so by (1) (1-e)bR=gR where
g°=g. Since R is commutative, then eg=0, so h=e+g-ge is an idempotent
element, in fact, h*=(e + g - ge)’=(e + g - ge) (e + g - ge)=e’ + eg -ge’ +
ge+g’-g’e-ge’-g’e+g’e’=e+eg-ge+tge+g-ge—ge+tgetge=e
+ g - ge. Hence aR®bR=hR .

Before the next result we give some definitions.

Definition 1.3.4 [10,p.124] : Let M be an R-module, a

monomorphism o:M—E is called an injective hull of M if E is injective
and o is essential monomorphism, i.e., G(M)gE.

For example, Qz is an injective hull of Z;.

Remark 1.3.5 : Let M be an R-module, then every module has an
injective hull [10, p.127]

Note 1.3.6 : We use the notation I1(M) for injective hull of M.
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Definition 1.3.7 [14] : An R-module M is called weakly injective if

for every finitely generated submodule NcI(M), NcXcl(M) for some
X=M.

Remark 1.3.8 : Every injective module is weakly injective module, but

the converse is not true .
For example, the Z-module Z, is not weakly injective, in fact ,1(Z,)= Z,”
and Z, < Z,”, but Z,=¢,. However, the Z-module Z is weakly injective

but not injective. In fact, 1(Z2)=Q, and every finitely generated

Z-submodule of Q has the form %:{g\n e Z,b=0} , clearly %; z

and — c

Z Z
B EQQ

Theorem 1.3.9 [14] : R is self-injective if and only if R is P-injective

and weakly injective.

Proof : The conditions are clearly necessary. For the converse, if acl(R)
we show that acR. we have R+aRcXcI(R) with X=R. Hence X has the
C, —condition (property(1) Theorem (1.3.3), so R is a direct summand of
X. But R is essential in I(R), so R=X as required.

Definition 1.3.10 [10,p.52] :

(1) An R-module B is called a generator of an R-module M if

M=% Im(p) where pcHom (B,M) .

(2) An R-module C is called a cogenerator of an R-module M if
O0=nkere where peHom(M,C).
Recall that an R-module M is called a duo module if every

submodule of M is fully invariant [21] .

Theorem 1.3.11 [14] : Let M be a duo R-module with S=end(Mg) , let

[, v denote elements of S.
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(1) Assume that M generator kerf for each f<S. Then S is P-injective
if and only if ker sckery implies that yeSg.

(2) Assume that M cogenerates M/SM for each peS. Then S is
P-injective if and only if yMc M, implies that ye SS.

Proof (1) =) Since M is duo module, then it is easily seen that S is

commutative. S is P-injective, then by proposition (1.1.11) if ker fckery ,
then ye /S, this condition holds for any M.

&) if yeannsanng(p), i.e., y[anns(S)]=0, we show that kerpckery. Let
xekerp, since M generates kerg, then x= Z; Ai(m;) where A;:M—kerg,
hence A(x)=p£(Ai)=0 for each i, which implies Ajeanny(f). Thus yA;=0, it
follows that xekery. Hence by proposition (1.1.11) S is P-injective.
(2)=>) Again, the forward implication always holds.

& ) If yeannsanng(A), then ya=0, where a.canns(f), so a,4=0, hence
v(=0, we want to show that yMc M, assume not, then there exists
me,eM such that y(m,)¢ /M. Since M cogenerates M/SM, then there
exists o:M/pM — M satisfies c[y(m,)+A(M)]=0. If A:M — M is defined
by A(m)=c[m+£(M)], then A[y(m,)]=c[y(m,)+A(M)]£0, hence Ay=0, so
A B (M= o[Am)+AM)], but fm)eSM). Thus AAm)=c[AM)]=0,
therefore A 4=0 a contradiction. Hence yMc /M, which implies that ye £S.
Then by proposition (1.1.11)S is P-injective.

Befor giving the next lemma we give this definition.

Definition 1.3.12 [10,p.147] : An asending chain of submodules of

the form N;c N,c...c N,c... is said to satisfy the asending chain

condition if there exists neN such that N,= Np.1=... .
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Remark 1.3.13 : We use the notation A.C.C. for asending chain

condition.

We need the following lemma .

Lemma 1.3.14 [14] : Let R be a ring and let | be an ideal of R such

that R/l satisfies the A.C.C. on annihilators. If y;,y,,... are subsets of ann
(1), then there exists n >1 such that ann (Yn+:...y1)=ann (Y,...y1) where y;
y;j is the set theortic product of y; y;.

Proof: Write R=R/l and r => r denote the natural homomorphism
R— R. Then ann (yi) <ann( Yy, yi)<ann( ys y, yi)c... . Since
R=R/I satisfies A.C.C. on annihiliators, then ann ( Yni1 V... Y1)
=ann( Yy... y1) for some n>1 . Now if acann(yus1 ...y1), then (Ynss...
...y1) a=0. Since R=R/I and y; Y, ...are subsets of ann (I), then
R=(0+Yps1)....(0+y1) (0+8)= Vne1 V... Y1 @a= 0,80 V... y; a =0 and
Yn...y1a2 < |. Since every A.C.C. has maximal element [10, p.147] , then |
< ann (Yn+1)- Thus yy...yiacann(Yn+1), 1.€., Yns1 (Vn...y218)=0 proving this

lemma.

Next we need the definition of T-nilpotent ideal.

Definition 1.3.15 [10, p.291] : A set A of a ring R is called

T-nilpotent if for every family (aj,a,,....), ajec A a keN exists with ax

adk1..... a;=0, a; a,.....a,=0 .

The following result was proved by Armendariz and Park [2] .

Theorem 1.3.16 [14] : If R is P-injective and R/Soc(R) satisfies the

A.C.C. on annihilators, then J(R) is nilpotent .

Proof : Assume J=J(R) and K=Soc (R).Since R is P-injective, then by n
theorem (1.2.10 ) JK=0, so Jcann (K). It suffices to show that J is
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T-nilpotent . (J+K)/K is nilpotent in R/K by hypothesis. Now let a;,a,, ...
be given in J, we show that a,...a, a;=0 for some n . Sinece R/Soc(R)
satisfies the A.C.C., then by lemma (1.3.14) ann(a,+1 an...a;)=ann(a,...a,)
for some n . So by corollary (1.1.12) Ra,.; a,...a;=Ra,...a; . Hence ra,+1
an...a;=ap...a; where reR . S0 a,...a;-ran+; an...a;=0, which implies
an...a1(1-ray+1)=0. Since ra,.;€J(R) if and only if 1l-ra,.; IS invertible
[10,p.220], then there exists teR such that a,....a;(1-ra,.;)t=0, so (1-
ra,.1)t=1, then a,...a;=0 .

Corollary 1.3.17 [14] : If R is P-injective and satisfies the A.C.C. on

annihilators, then J(R) is nilpotent .

Proof: see [13] .
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CHAPTER TWO
PRINCIPALLY QUASI-INJECTIVE MODULES AND
OTHER CLASSES OF MODULES

Introduction:

In this chapter, we study the relation between the class of
principally quasi-injective modules and other well-known classes of
modules.

In section 1, we study the relation between principally quasi-injective
modules and summand intersection property, summand sum property. For
references [15],[4],[5].

In section 2, we study the relation between duo principally quasi-injective
modules and uniform submodules.

In section 3 , we study the relation between principally quasi-injective
modules and continuous modules where an R-module M is continuous if
M has C;-condition [8] and C,-condition [15] .
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Section 2.1 The Endomorphism Ring of a Principally

Quasi-Injective Module.,

In this section we recall the definition of modules with summand
intersection property (SIP) and summand sum property (SSP), and we
look at some properties of these modules. For more details see
[15],[4].[5]. We also study the relation between the module M being
uniform and the ring of endomorphisms being local [15] .

Recall that an R-module M is called uniform if every submodule
of M is essential in M, and the submodule U of M is essential if for every
non-zero submodule A of M, AnU=0.

For example, the Z-module Zg is not uniform where Z,as a Z-module is
uniform .
Recall that a ring R is called local ring if it has one unique

maximal ideal.

Remark 2.1.1 [10, p.169] : A ring R is local ring if and only if the

set of non-units of R is an ideal in R.

Proposition 2.1.2 [15] : Let Mg be a P.Q.-injective module with
S=end(Mg) .

(1) If Siis local, then M is uniform.

(2) If M is cyclic and uniform, then S is local.
Proof:

(1) Suppose N and K are non-zero submodules of M such that
NNK=0 , choose 0 #neN and 0zkeK, define a:(n+k)R—M by
af(n+k)r]=nr. This is well-defined, in fact, let (n+k)r; = (n+Kk)r;
where ry,r; eR , so (n+k)ri-(n+k)r,=(n+k)ri-r,e NmK=0, then
(n+k) (ri-rp)=0. Hence a[(n+k) (ri-r2)]= n(ry-r)=0 . Therefore

n(ry-rp)=nry-nr,=0, so nry=nr, .Since M is P.Q.-injective, then there
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exists aeS that extends o.. Hence (1- a)(n)=0 = a(K) . Since S
is local, then either o is a unit or (1- o) is a unit, i.e., n=0 or k=0

which is a contradiction.

i
0———>(n+kR—> M

| ’

M

(2) Since M is cyclic, then by proposition (1.2.15) W(S)=J(S). Now if
oeS is a non-unit, then ker (a)#0 . Since M is uniform, then ker
(o) seMR. Hence a.e W(S)=J(S) , so J(S) contains all non-units of S
. Thus by remark (2.1.1) S is local.

Definition 2.1.3 [10, p.281] : A ring R is called semiperfect if

R=R/rad(R) is semisimple and every idempotent element s € R there is

an idempotent element eeR with s=e

Proposition 2.1.4 [15] : If M is a finite direct sum of submodules with

local endomorphism rings, then S=end(M) is semiperfect .
The converse holds for P-injective duo modules.

Recall that an R-module M is multiplication R-module where R is
commutative if for every submodule N of M, there exists an ideal | of R
such that N=IM. It is known that every multiplication module is a duo
module [17].

The following proposition is well-known, but we present here a

proof for the sake of completeness.

Proposition 2.1.5 [8] : Let M be a duo R-module and A is a direct

summand. Then
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(1) A is itself a duo module .

(2) If M is a self-generator, then A is also a self-generator .

Proof :

(1) Let peend(A) , M — A, i:A — M be the projection and
imbedding respectively. Then W=i,p,m €end (M) . Since M is duo
and i,m=1,, then for any submodule X of A, e(X)=%Y(X) < X,
proving that A is duo.

(2) Since A is a direct summand, then M=A®B where B<M, hence
for any peend (M) we get o(M)=p(A+B)=¢(A)+¢(B). Since M is
a self-generator, then X can be written as X = >, 0(M) =
2ocl(@(A)+o(B)) for some subset | of end (M) where X is a
submodule of A . Since M is duo, then ¢(B) < B, it follows that
¢(B)=0 for all p<l. Hence X=2,.,9(A). More over, ¢ can be
considered as an endomorphism of A, since ¢(A) < A. This shows

that A is a self-generator.

The following result gives a relation between the module M being

duo and the ring S=end(Mg) being semiperfect.

Proposition 2.1.6 [15] : Let Mg be a duo, P.Q.-injective module for

which S=end(Mg) is semiperfect. Then M is a finite direct sum of

uniform P.Q.-injective modules.

Proof: Since S is semiperfect, then M=M; @.....® M, where S=end(Mg)
Is local for each i . Since M is duo then each M; is duo and P.Q.-injective.
Hence by proposition (2.1.2) M; is uniform.

Recall that an R-module M is said to have the summand
intersection property (SIP) if the intersection of any two direct summands

Is a gain a direct summand [15],[4],[5].

33



Chapter Two P.q.-injective

Examples 2.1.7 :
(1) Every multiplication R- module has the SIP [5] .

(2) In particular every commutative ring with identity has the SIP, in
fact, assume R=A®A;=B®B; where A, B, A;, BicR. Since A and
B are summands of R, then A=Re and B=Rf such that e and f are
idempotent elements in R, then by [10, p.174], it is easy to check
that AnB=Ref. Hence AnB is a direct summand in R .

(3) Consider the module M=Z,&Z, as a Z-module, hence M={(0,0),
0,1), (1,0), (1,2), (2,0), (2,1), (3,0), (3,1)}, let A=Z, ®0 and
B=Z(1,1), the submodule generated by (1,1). Now A and B are
summands of M. But AnB={(0,0), (2,0)} is not a summand of M.
Thus M does not have the SIP .

Proposition 2.1.8 [15] : Let Mg be a P.Q.-injective, duo module, then
Mg has the SIP .

Proof : Suppose N and K are direct summands of M, i.e., M=N®N;and
M=K®K;where N4,K; are submodules of M. We must show that NNK is
a summand of M. Note that N=N"(K®K,). Since M is duo, then by
proposition (1.1.21) N=N n (K®K,) = (NnK) @ (NnKy). Hence M=N &
N;= (NNK) @ (NnK)@N; and so NnKis indeed a direct summand.

Recall that an R-module M is said to have the summand sum
property (SSP) if the sum of any two summands of M is again a
summand [4],[5],[15].

The following proposition shows that there exists a relation
between SIP and SSP under the Cs-condition .

Proposition 2.1.9 [15] : If Mg has the Cs-condition and the SIP, then
M has the SSP .
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Proof : Suppose N and K are direct summands of M. We must show that
N+K is a summand. Since M has the SIP, then NnK is a direct summand
, 1.e., M=(NNK)®X where X is a submodule of M. Now we have
K=(NNK)®(KNX). So N+K=N+ [(NNK)D(KNX)]=ENS(KNX). So N
and KnX are both summands, then N+K is a direct summand because M

satisfies C5-condition.

Proposition 2.1.10 [15] :Let Mg be acyclic, P.Q.-injective module.
Then M has both the SIP and the SSP.

Proof : Since M is cyclic, then M is multiplication module and hence is
duo, then by proposition (2.1.8) M has the SIP. Since M is cyclic,
P.Q.-injective, then by proposition (1.2.13(2)) M has C,-condition, hence
M has Cs-condition [14]. Thus by proposition (2.1.9) M has SSP.
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Section 2.2 Uniform Submodules

In a duo principally quasi-injective module M there is a
relationship between the maximal left ideals of the endomorphism ring
and the maximal uniform submodules of M. This is explored in this

section. Many of the ideas in this section trace back to Camillo [7].

We need the following lemma for the proof of the theorem.

Lemma 2.2.1 [15]: Let Mg be a P.Q.-injective module. Let N be a

non-zero submodule of M and let N**PcM and N=**QcM. If P is fully

invariant in M, then Nc*™*P+Q .

Proof : Suppose 0=p+qeP+Q. Since Nc** Q, then if (p+g)RNQ=0, then
(p+g)RNN=0. (p+q)anng(p)c (p+q)RNAR, in fact , let xe(p+qg)anng(p),
then x=(p+q)r where reR and pr=0, hence x=pr+qr=0 +qr =qre
(p+tg)RNgR. Then (p+q)R NQ=0, so (p+q)RNN=0 where (p+q)
anng(p)#0. Now assume that (p+g)anng(p)=0. Then anng(p)canng(p+q),
l.e., anng(p+g)= {reanng(p) \(p+q)r=0} where pr=0. Therefore by
theorem (1.1.9(3)) S(p+g)<Sp. But p+geSpcp, since p is fully invariant,
then p+geP, but NcP, hence p+qeN implies that (p+g)RNN=0 .

We also need the following definition.

Definition 2.2.2 [15] : A submodule A of an R-module M is said to be

closed submodule of M if A has no proper essential extension in M, i.e.,
if A%B <M, then B=A..
For example { 0, 3}closed in Zg,{ 0, 2, 4} closed in Zg, but { 0, 2}
is not closed in Z,.

Recall that every non-zero submodule N of Mg has (by Zorn's
lemma [10,p.25]) a maximal essential extension P in M called closure of
N in M.
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Theorem 2.2.3 [15] : Let Mg be a P.Q.-injective module and suppose a

non-zero submodule N of M has a fully invariant closure P in M. Then P
contains every essential extension of N, so P is the unique closure of N in
M.

Proof : Suppose N*QcM. then by lemma (2.2.1) Nc*™*P+Q. Since
NcP, then Pc®™*P+Q, but P is closed, this means that P=P+Q, so QcP.

The result follows.

Our main concern here is with uniform submodules U of a module
Mg. By Zorn's lemma [10, p.25] . U has maximal uniform extensions in
M. These are all the closure of U, in fact, they are precisely the closed
uniform submodules of M. So every uniform closed submodule is a
maximal uniform submodule and is a maximal uniform extension of each
of its non-zero submodules.
Remark 2.2.4 [15] : If U is a uniform submodule of M with
S=end(Mg) , define AU={aeS\ ker (o) n U=0}. If uR=0 is cyclic
uniform, we call u a uniform element of M and write AuR=AU. It can be
easily checked that AU is a left ideal in S .

Proposition 2.2.5 [15] : Let Mg be a P.Q.-injective module with

S=end(Mg) . If u is a uniform element of M, then Au is the unique

maximal left ideal of S containing anng(u).

Proof: Suppose that anng(u)=X where X is a left ideal of S, X#S. Now
If aeX-Au, then ker(a)nuR=0 , hence by proposition (1.1.10)
S=anng(0)=anng[ker(a)NuR]=Sa+anns(u)cX. Then ScX a contradiction.
Thus X cAu, also Au is unique because it is maximal and XcAu. Thus

the proof is complete.
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Corollary 2.2.6 [14] : Let R be a P-injective ring. If ueR is a uniform

element, define M ={xeR\ann(xX)nuR=0}. Then Mu is the unique

maximal ideal which contains ann(u) .

Proposition 2.2.7 [15] : Let Mg be a P.Q.-injective module and let P

and Q be fully invariant maximal uniform submodules of M. If Ap=AQ
then P=Q.

Proof : It suffices (by theorem 2.2.3) to show that PmQ+0,since then
both P and Q are fully invariant closures of PnQ. Assume on the contrary
that PNQ=0 . Choose 0#peP, 0+qeQ and consider y : pR + gqR > M
given by y (pr+qgs)=pr where rs eR. It is easily seen that y is
well-defined. Since M is P.Q.-injective , then there exists a.eS which

extends y. _
[
O——>(E+tR— =M

y l .
M
We have a(p)=ali(p+0)]= y(p+0)=p, hence a(p)=p, so p-a(p)= (1-
a)(p)=0, then peker (1-a). Also o(q)=alfi(0+q)]=y(0o+q)=0, hence
o(q)=0, then qeker (a). Thus Ap={l-aeS\ker (1-a) NP0},
AQ={aeS\ker (o) N Q=0}. So 1-acAp and ac AQ=Ap. It follows that
1eAp a contradiction. Hence PnQ=0 and P=Q .

Proposition 2.2.8 [15] : Let Mg be a P.Q.-injective module with

S=end(Mg) and let N=u;R®...®u,R where each ujeM is a uniform
element. If AcS is a maximal left ideal not of the form AU for any
uniform submodule UcM, then there exists peA such that ker (1-/)N

ess
< N.

38



Chapter Two P.q.-injective

Proof : Since A#Au;, let ker(a)nu;R=0 where acA. Then
anng(ouy)canng(uy), in fact, let reanng(owuy), then o(uy)r=0=a(usr),
implies that ujreker (a)nu;R, hence u;r=0, thus reanng(u;) and so
u;eSau; by theorem (1.1.9(3)), say u;=pou; where SeS, so u;-fou;=(1-
Su=0 where pi=pocA . If ker (1-£)nuR=0 for each i >1, we are
done. Since (1-f1) uR=uyR, if ker (1-8)nu,R=0, then (1-B)u, is a
uniform element and so, as before, there exists yeA such that (1-y) (1-
S)=0, i.e., ker (1-y)mnu,R=0 where yeA. Then anng(1-y)u, < anng(u,),
implies that u,eS(1-y)u,, so u,=p(1-y)u, where £ €S, hence u,-£i(1-
U=0=(1-£)(1-y)u, . If we take B=y+p-yf, then BeA and have (1-
)u,=0 and (1-4,)u;=0. This means that ker (1-5,)nu;R=0 for i, 1, 2. This
process continues to give S<A such that ker (1-5) nuR=0 for each i, this

complete the proof.
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Section 2.3 Quasi-Principally - Injective Modules and

Continuous Modules :

An R-module M with C;-condition and C,-condition is called
continuous module where M is said to have the C;-condition, if every
submodule of M is essential in a direct summand of M [8] and it has
C,-condition if every submodule of M that is isomorphic to a direct
summand of M is itself a direct summand of M. In this section we study
the relation between Q.P.-injective modules and continuous modules. For

a reference on continuous module see [8] .

Proposition 2.3.1 [8] : If M is uniform and P.Q.-injective module,

then M is continuous module.

Proof : Since M is uniform, then every submodule of M is essential in

M, hence M has C;-condition. Also M is P.Q.-injective module, then by

proposition (1.2.13) M has C,-condition. Hence M is continuous module.

Definition 2.3.2 [20] : A submodule K of an R-module M is called

M-cyclic submodule of M if it is isomorphic to M/X for some submodule
X of M. Equivalently, K is M-cyclic if there exists aeend(M) such that
K=a(M).

Proposition  2.3.3 [8] : Let M be a Q.P.-injective module. If

S=end(Mg) is local, then for any non-zero fully invariant M-cyclic
submodules A and B of M, AnB=0 .

Proof : Let 0#s(M)=A, 0£t(M)=B where s, te S and AnB=0 . Define
the map ¢ : (s+t) (M) — M by (s+t) (m) ~ s(m) for every meM. This
map is well-defined , in fact , (stt) (m) = (s+t) (m’) implies s(m-m’) =t
(m’-m) €A n B=0, so s(m)=s(m’) where m, m'eM. Since M is

P.Q.-injective, then there exists yes such that
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(Yoi) [ .oy my=Ylissyomy=@lissymy - 1€ for any meM , o(s+t)
(m)=y(s+t) (m). Since ¢ (s+t) (m) = s(m), then s=y(s+t). This implies
that s-y(s+t)= s-ys=(1-y)s= v . Since A and B are fully invariant
submodules, then (1-y)sy <A and wyywmcB. Since  (1-y)swm=
vim)€ANB=0 , then (1-y)s=0 and y=0 . But S is local, then either y or
1-y is invertible, if y is invertible, then t=0 a contradiction or 1-y is

invertible, then s=0 a contradiction. Hence AnB=0 .
i
O——>( s+t )M —> M

cpl v

M

Corollary 2.3.4 [8] : If M is a Q.P.-injective duo module which is a

self-generator with local endomorphism ring, then M is uniform, hence it

IS continuous .

Proof : Since M is self-generator, then for any meM, mR contains a
non-zero M-cyclic submodule. Hence by proposition (2.3.3) M is
uniform. Since M is P.Q.-injective, then by proposition (2.3.1) M is
continuous.

It is known that every multiplication module is duo and

self-generator [17], thus

Corollary 2.3.5 : If M is Q.P.-injective multiplication module with

S=end(Mg) is local, then M is uniform, hence M is continuous.

Proposition 2.3.6 [8] : Let M be a Q.P.-injective and ®;.,B; a direct sum

of fully invariant M-cyclic submodules of M. Then for any fully invariant
submodule A of M AN(®i.Bj) =®ii(ANB;) .
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Proof : It is known that ®;(AB;) = AN (®;B;). Let a eAN(S; B;) and
Bi=si(M) such that sjeS=end(Mgr) .Then a=b;+b,+...+b, where
bi=si(m;) e B; for some m;eM. Notice that the XS is direct. Since B is
fully invariant, then S4i(M)=SgicB; (icl). So let m¢: @S (M) —
Sk (M),1<k<n be the projection. Since M is Q.P.-injective , then by [18],
we can find an endomorphism @x: M — M which extends ny . Since mk is
onto, then there exists bxeSk (M) such that bx= nx(a) < AnBk for any

1<k<n because A is fully invariant. Hence AN(®ic| Bi) < ®ici(ANB)) .

[
O €|_Dinel Si(M) M

ik

sK(M) P

Proposition 2.3.7 [8] : Let M be a Q.P.-injective and duo module. If

A and B are direct summands of M, then so are AnB and A+B .

Proof : Let M=A ® A;=B ® B;. Then by proposition (2.3.6) we have
B=BAM=BN(A®A,)=(BNA)D(BNA,). Hence M=(BNA) ® (BNA))®
B, . Thus AnB is a direct summand of M. More over A+B=A+(BnA) &
(BNA)=[A+(BNA)] @ (BNA)=A+(BNA,) . Since M is Q.P.-injective,
A and B are direct summands of M, then by [18] M has Cz-condition,

hence A+B is a direct summand of M and the proof is now complete.

Corollary 2.3.8 : Let M be a Q.P.-injective multiplication module. If A

and B are direct summands of M, then so are A~nB and A+B .
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We observed that every uniform, Q.P.-injective module is
continuous , we now consider the case when M is Q.P.-injective module
which is a direct sum M=®;.,M; of uniform submodules. In this case, if
M is duo, then by proposition (2.3.6) every submodule A of M can be
written in the form A=®;.;(AnM;) where Jcl and AnM; = 0, jeJ. Since

each AnM; <M;,we see that AS ®;c; M;. Thus we have proved.

Theorem 2.3.9 [8] : Let M=@®;., M be a Q.P.-injective module where

each M; is uniform. If M is duo module, then M is continuous module .

Before the next result we need this defintion.

Definition 2.3.10 [10, p.275] : An R-module M is called semiperfect

if every epimorphic image of M has a projective cover where an
epimorphism o:P — M is called projective cover of M if P is projective

and o is small epimorphism.

Theorem 2.3.11 [8] : Suppose that M is semiperfect, duo,

Q.P.-injective module. If M is a self-generator, then M is continuous

module.

Proof : Since M is Q.P.-injective module, then by proposition (1.2.13)
M has C,-condition. Hence it is enough to prove that M has C,-condition.
Since M is self-generator and semiperfect, then by [19, 42.5] we can
write M=®;., M; where Mi/rad (M;) is simple for each i<l. then rad(M;) is
maximal in M;. Since each M,; is self-generator and semiperfect, rad (M;)
is small in M; and hence M; is indecomposable. By [10, p.285], end(M;)
is local for each iel. By proposition (2.1.5) each M; is duo and a
self-generator. Since any direct summand of P.Q.-injective is again
P.Q.-injective, then by corollary (2.3.4) each M; is uniform, then M has
C;-condition. Therefore M is continuous.
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Corollary 2.3.12 : Suppose that M is semiperfect. If M is Q.P.-injective

multiplication module, then M is continuous module.
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CHAPTER THREE
SEMI - INJECTIVE MODULES AND FULLY
STABLE MODULES

Introduction:

Let M be an R-module with S=end(Mg). In this chapter we study
briefly notions of injectivity, like M-principally injective,
semi-injectivity, - injectivity and direct- injectivity. More over, we study
the notions of fully stability. This chapter consists of two sections.

In section 1, we study the above mentioned types of injectivity and we
study the definition of M-cyclic submodule instate of cyclic submodule,
this concept is studied in [20] .

In section 2, we study fully stable and fully invariant modules in

principally quasi-injective modules and rings.
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Section 3.1 On the Endomorphism Ring of a Semi - Injective

Module

In this section we study the endomorphism rings of semi-injective
modules, in particular we study the Jacobson radical of S with its relation
to the sets W(S) = {seS\ ker (s) < M} and A={seS\ker (1+ts)=0 for all
teS}. Most of the results of this section appeared in [20].
Definition 3.1.1 [20] : An R-module N is called M-principally injective if

every R-homomorphism from M-cyclic submodule K of M to N can be
extended to M, in general, the following diagram is commutative, @,i=f

where K=M/L and L is a submodule of M.

0 >K > M

Equivalently, for any endomorphism s of M, every homomorphism

from s(M) to N can be extended to a homomorphism from M to N, hyi=a.
[
0 ——>s(M) —m——> M

al )

N

Remark 3.1.2 : An M-cyclic submodules and cyclic submodules are

completely different concepts.
For example, Z as a submodule of the Z-module Q is cyclic but not
Q-cyclic because every non-zero homomorphism f:Q — Q is an

epimorphism. On the other hand, let M=Z,®Z,®Z; considered as a
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Z-module. Since M/Z; = Z,®Z,, then Z,®Z, is M-cyclic. But Z,®Z, is
not cyclic .

The following proposition gives a characterization of
M-principally injective modules.

Proposition 3.1.3 [20] : Let M and N be R-modules. Then N is

M-principally injective if and only if for each seS=end (M). Homg
(M,N)s={fe Homg (M,N) \ f(ker (s))=0} where Hom (M,N)s ={fs \ fe
Hom (M,N)}.

Proof =) Assume N is M-principally injective, we want to show that
Homg (M,N)s={fe Homg (M,N) \ f(ker (s))=0}, it is clear that Homg
(M,N)s < {fe Homr (M,N) \ f(ker (s))=0}. Conversely, let fe Homg
(M,N)\ f(ker (s))=0, hence ker (s)cker (f). Define a homomorphism
¢: S(M) — N by o[s(M)]= f(m) ¥ meM, ¢ is well-defined, in fact, let
s(my)=s(m,) where m;, m, € M, hence s(m;)-s(m,)= s(m;-m,)=0, then
m;-m, € Kker (s) < ker (f), so m;-m, eker (f). Thus f(m;-m,)= f(m,)-
f(m,)=0, which implies f(m;)=f(m,), so ¢ [s(my)]=¢ [s(m,]. Since N is
M-principally injective, then there exists an R-homomorphismt: M — N
such that toi=¢ where i: s(M) — M is the inclusion map. Now f(M)=
o[i(s(M)]=o[s(M)]=t[i(s(M))]=t[s(M)]. Hence f=ts and therefore
feHomg(M,N)s

i
0——>s(M) ———> M

],/

N

& ) Suppose that ¢: s(M) — N is an R-homomorphism. Then ¢, €
Homr(M,N) and ¢ [ker (s)]=0 . By assumption, we have
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o[s(M)]= u[s(M)] = u[i(s(M))] for some u € Homg(M,N). This shows
that N is  M-principally injective.

i
0—>s(M) ————> M

|,/

N

Definition 3.1.4 [20] : An R-module M is called semi-injective if it is

M- principally injective module.

It was shown lemma (1.2.14) that W(S) < J(S), the following

gives a condition that implies equality.

Proposition 3.1.5[20] : Let M be semi-injective , then W(S) — J(S)

and equality holds if S/W(S) is regular.

Proof : If seJ(S), then 1-sa has a left inverse. Since S/W(S) is regular,
then s+W(S) = sass + W(S) for some a.€S. This implies that s-sas=(1-sa)
seW(S), so there exists geS such that g(1-sa)s=1.s = s eW(S). This
shows that W(S)=J(S) .

Corollary 3.1.6 [20] : : Let M be semi-injective . If S/J(S) is regular,
then S/W(S) is regular if and only if J(S)=W(S).

Proof = ) Since S/W(S) is regular, then by proposition (3.1.5)
J(S)=W(S).
& ) Since S/J(S) is regular and J(S)=W(S), then S/J(S)=S/W(S) is

regular.
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Remark 3.1.7 [20]: Let M be semi-injective ,then J(S)=A

Proof : Lets €J(S), then for each teS, 1+ts has a left inverse in S, there
exists geS such that g(1+ts)=1y, hence 1+ts is monomorphism, thus ker
(1+ts)=0. Therefore s €A. On the other hand, if seA, then ker (1+ts)=0
for all teS, f[ker(1+ts)]=f(0)=0, which implies that seanns[ker (1+ts)]=S,
thus by proposition (3.1.3) s=s(1+ts). In particular g(1+ts)=1y for some
geS, then by [10, p.220] s€J(S) .

Remark 3.1.8 [20] : Let M be semi-injective . If M is uniform, then
Z(Ss) < J(S).

Proof : Let seZ(S), then ker (s) # 0. For any teS, we have ker (s) M ker
(1+ts)=0, then ker (1+ts)=0 . Hence by (3.1.7) s €J(S).

Before the next result we need some definitions.

Definition 3.1.9 [20] : An R-module M is called r-injective if for all

submodules U and V of M with UnV=0, there exists feS with Ucker f
and Vcker (1-f) .

Definition 3.1.10 [20] : An R-module M is said to be direct-injective

if for any direct summand D of M, every monomorphism f: D —» M

splits.

Theorem 3.1.11 [20] : Let M be a semi-injective R-module. Then
() If Sis local then J(S)= {seS\ ker (s) = 0}.

(2) If Im(s)=**M where seS , then any monomorphism t: s(M) — M
can be extended to a monomorphismin S .

(3) If M is uniform, then S is local ring and J(S)=W(S) .

(4) For seS, if M is uniform and s is left invertible, then s is invertible.

(5) M is uniform if and only if S is local and M is w-injective .
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Proof : (1) Since S is local, Ss#S for any seJ(S). If ker (s)=0, then . :
s(M) —» M given by af[s(m)]=m for any meM is well-defined and
R-homomorphism. Since M is semi-injective, there exists SeS, extension
of a. As(m)[=4i(s(m))]=a[s(m)]=m, hence A=1\ such that peS, so
Ss=S, which is a contradiction. This shows that J(S)={seS\ker (s) = 0}.
The other inclusion {seS\ker (s) # 0} < J(S) always holds .

i
0—>s(M) ——> M

|/

M

(2) Since M is semi-injective, then there exists geS such that
gls(m)]=g[i(s(m))]=t[s(m)]where me M. Thus Im(s)nker (g)=0, in fact, if
xeker (g) m Im(s), then xeker (g) and xelm(s). This implies that g(x)=0
and there exists yeM such that x=s(y). Thus 0=g(x)=g[s(y)]
=t[s(y)]=t(x)=0, hence xeker (t). Since t is monomorphism, then x=0.
Thus by definition (1.1.15) ker (g)=0, which implies that g is

monomorphism.
i
0 ——>s(M) —> M
t
l ﬁ
M

(3) Since M is direct-injective, S is local provided that M is uniform
[19, 41.22]. It follows that J(S)=W(S) by (1) .

(4) Since s has a left inverse, then there exists feS such that fs=1y,, note
that f is onto and s is 1-1, hence ker (s)=0, but M is uniform, then by (3) S
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is local and by(1) ker (s) = 0, then we have seJ(S), this implies that 1-s
J(S), so s is invertible .

(5) Since M is uniform, then by (3) S is local, so M is m-injective.
Conversely, let U and V be submodules of M such that UnV=0. Since M
IS -injective, then there exists feS such that Uc ker (f) and Vcker (1-f).
But S is local, then either f or 1-f belongs to J(S). If feJ(S), then g(1-f)=1
for some geS. Thus ker (1-f)=0, implies that V=0. Other wise U=0.

Hence M is uniform .

Proposition 3.1.12 [20]: Suppose M is a semi-injective and

n-injective module. If S is semiperfect, then M=®{‘:1 U; where U; is

uniform and semi-injective for each i .

Proof : Since S is semiperfect and M is semi-injective, then M=
U:®.....® U, where each end (U;) is local. Note that U; is semi-injective.

So by [19, 41.20] each U; is m-injective. Thus by proposition (3.1.11(5))

we see that U; is uniform.

Proposition 3.1.13 [20] : If Soc(M)c**M, then
(1) W(S)=anngs(Soc(M)) .
(2) SIW(S) is embeded in endr(Soc(M)) as a subring.

Proof : (1) Let seW(S), then ker (s) =**M, so by definition of (1.1.17)
Soc(M) < ker (s), hence s(Soc(M))=0. Which implies that seanng (Soc
(M)). On the other hand, let s eanng (Soc(M)) where seS, then
s(Soc(M))=0, hence Soc(M) < ker (s), so Soc(M) =** M. thus ker (s) =**
M and se W(S).

(2) For each s€S, let o(s): Soc(M) — Soc(M) be defined by (¢(S)x) =S(X).
Since Soc(M) is fully invariant in M, then ¢(s) eendr (Soc(M)) and ¢:S
— endr(Soc(M)) is a ring homomorphism. Note that ker (@)= W(S), in
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fact, seW(S) < ker (s) = M, i.e., V 0 # meM, there exists a.S such
that a(m)z0 and a(m)eker (s), hence s(a(m))=0, implies that
¢@[s(a(m))]=0. Thus seker (o), therefore by first isomorphism theorem
[10, p.56] S/ W(S) = endr(Soc(M)).
Proposition 3.1.14 [20] : If M is semi-injective and a self-generator
and if Soc(M)c**M, then

(1) J(S)=anns(Sco(M)).

(2) S/J(S) = endr (Soc(M)).

Proof : (1) Since M is semi-injective and a self-generator, then by [18]
J(S)=W(S). Thus by proposition (3.1.13) J(S)=anns(Soc(M)).

(2) Since M is semi-injective, every R-homomorphism in endr (Soc(M))
can be extended to an R-homomorphism in S. Then by (1) and
proposition (3.1.13(2)) S/J(S) is isomorphic to endg (Soc(M)) as a ring.

Since every projective module is self-generator, then we have

Corollary 3.1.15 : If M is semi-injective and projective and if
Soc(M)c=** M, then

(2) J(S)=anng(Soc(M)).

(2) S/J(S) = endg (Soc(M)).

Proposition 3.1.16 [20] : Let M be a semi-injective R-module.

(1) If Im(s) is a simple right R-module where seS, then Ss is a simple
left S-module.
@) If sy(M)®.....8sy(M) is direct where s3,5,,...,5, €S then

S(sy+...+8,)=Ss;+...+Ss, .

Proof : (1) Let A be a non-zero submodule of Ss and OzaseA. then

Sas cA. Since Im(s) is simple, ker (g)nIm(s)=0 . Define g: as(M) > M
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by g[as(m)]=s(m) for every meM. It is obvious that g is an
R-homomorphism. Since M is semi-injective, then there exists a
homomorphism h €S such that h(as)=g(as). Therefore h(as)=s, seSas.

It follows that Sas =Ss and A=Ss.

0 —>as(M)———>

|

M

(2) Let aySy+...+o,S, €Ss:+...+Ss,, . For each i, defined ¢;:(Si+...+S,) (M)
— M by ¢ [sit...+S(m)]=si(m) for every meM . Since
s{(M)@...... @s,(M) is direct, ¢; is well-defined, so it is clear that ¢; is an
R-homomorphism. Then there exists an R-homomorphism ¢; €S which
is an extension of ¢i. Then si= @i (Sit...+Sy) = @i (Si+...+Sp)
eS(sit...+s,) for every i=1,2,...,n. Consequently, o;S1+0,S,+.. . oS, €S
(Sy+...+sn). Hence Ssi+...+Ss,cS(s:+...+s,). The other inclusion always
holds.

0 ———> (5+...+5,)(M) ——>

Proposition 3.1.17 [20] : Every duo and semi-injective module has
the (SIP) and (SSP) .
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Proof : Write M=s(M)@K and M=t(M)®L where K, L are submodules
of M. Since M is duo, s(M)=s(t(M)®L)=st(M)+s(L)c(s(M) nt(M))+
(s(M) NL)=(s(M)t(M)) &(s(M)nL)cs(M) . Then s(M)nt(M) is a direct
summand of M. Now we write M=s(M)Nt(M)®@N. Then t(M)=t(M)
(s(M) N t(M)@EN) = s(M)Nt(M) @t(M) N N, so s(M)+t(M)
=s(M)+(s(M)nt(M) & t(M)nN)=s(M)+t(M)NN=s(M)®t(M) N N. Since
s(M) and t(M)~N are direct summands, s(M)+t(M) is a direct summand

of M by Cs-condition.

Definition 3.1.18 [20] : A ring R is called semi-regular if R/J(R) is

regular and idempotents can be lifted module J(R) .

Remark 3.1.19 [20] : R is semi-regular if and only if for each element

acR, there exists e?=e eRa such that a(1-e)eJ(R) .

Remark 3.1.20 [20] : For every seS/J(S), there exists a non-zero

idempotent a.eSs such that ker (s) < ker (o) and ker[s(1-a)] #0 .

Theorem 3.1.21 [20] : For a semi-injective module M, if S is

semi-regular, then (3.1.20) holds.

Proof : Let seS/J(S). Then there exists o*=a.eSs such that s(1-o)) €J(S).
Then a=0 and ker (s) cker (o). If ker [s(1-a)]=0, then gs(1-o)=1y for
some g € S by the semi-injectivity of M . It follows that a=0, a

contradiction. Hence ker [s(1-a)] #O0.

54



Chapter three Fully stable

Section 3.2 Fully Stable Modules

Recall that a submodule N of an R-module M is said to be fully

invariant if f(N)cN for each endomorphism f of M [21], we call M
invariant if each of its submodules is fully invariant. Recall that a
submodule N of an R-module M is said to be stable if f(N)cN for each
feHom(N,M), and the module M is said to be fully stable if each
submodule is stable [1]. In this section we study these notions in
P.Q.-injective rings and fully stable

Remark 3.2.1 : It is clear that each fully stable module is fully

invariant, but the converse is not true .
For example, Z as a Z-module is fully invariant, but it is not fully

stable.

Note 3.2.2 : R is fully stable if and only if R is fully stabel as

R-module .

Remark 3.2.3[1] :
(1) An R-module M is fully stable if and only if every cyclic submodule

is stable.
(21t is known that an R-module M is fully stable if and only if anny,
(@anng(x)) = xR V xeM..

A statement similar to the following statement is known for

pointwise injective modules [3], we prove it for P-injective rings .

Proposition 3.2.4 : Let R be aring, then R is P-injective if and only if

R is fully stabel.

Proof : By corollary (1.1.12(2)) annganng(x)=Rx V xeR, then by the

last remark. R is fully stable.
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Recall that a submodule N of an R-module M is said to satisfy Baer
criterion if for every R-homomorphism ¢:N — M, there exists an element
rin R such that ¢(n)=rn for each nin N [1] .

Notice that the concepts of Baer condition and Baer criterion
coincide for rings.

Clearly, every module which satisfies Baer criterion is fully stable.

The following result shows the relation between P-injective rings

and Baer condition.

Proposition 3.2.5 : Let R be a P-injective ring, then R satisfies Baer's

condition for every principal ideal | of R.

Proof : Let I=Rx, xeR and let fRx — R be any R-homomorphism.

Consider the following diagram

0 —>I=Rx —') R
f l
g
R

Since R is P-injective, then there exists g: R — R such that goi =f. Now
vV tel, t=rx where reR, f(t)=f(rx)=(dol)m=0[I(rx)]=g(rx) =rg(x) =rx
g(1)=t g(1), take g(1)=y, hence f(t)=ty wherey € R.

Proposition 3.2.6 : If R is P-injective ring, then for each ideals | and J

in R with 1+J is principal, anng(InJ)=anng(l)+anng(J).

Proof : Let xeanng(InJ). Define f : 1+J — R by f(a+b)=bx where a«l,
beld, fis well-defined. Since R is P-injective, then there exists yeR such
that f(a+b)=(a+b) y=bx . In particular O=f(a)=ay holds V ael, this implies
that ye anng(l). Vv bel, f(b)=by=bx, so bx-by=b(x-y)=0, hence

x-yeanng(J). Now x=y+x-y eanng(l)+anng(J).
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The converse of proposition (3.2.6) is not true.

For example, let nz, mz be ideals in Z, annz(nZnmZ)=annz(nmZ)=0, also
ann(nZ)+ann(mZ)={0}, but Z is not P-injective.
Now we raise the following question: Is every P.Q.-injective module

fully stable module?

The answer is No.
For example, Q as a Z-module is injective, hence P.Q.-injective, but Q as

a Z-module is not fully stable.

However, we have the following

Proposition 3.2.7 : Let M be a multiplication R-module. If M is

P.Q.-injective module , then M is fully stable.

Proof : It is enough to show that every cyclic submodule is stable. Let N
be a cyclic submodule of M, let © N — M be any
R-homomorphism. Sinec M is multiplication, then N=IM for some idael
| of R. Thus for each neN, n=; rm;, riel, m;e M. Consider the following

diagram, g,i=f.

v neN, f(n)=(g+i) (m) =g(n=g( 5 M) = 25g(m) e IM=N where

i=1 i=1

riel, mje M. Hence N is stable,then by remark (3.2.3) M is fully stable
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ABSTRACT

Let M be an R-module with endomorphism ring S. The module Mg
is called principally quasi-injective, if every R-homomorphism from any
cyclic submodule of M to M can be extended to an endomorphism of
M. An R-module N is called M-principally injective, if every
R-homomorphism from M-cyclic submodule K of M to N can be
extended to M. An R-module M is called semi-injective if it is
M-principally injective.

These concepts were studied by Nicholson, Yousif and wangwal.
The main purpose of this thesis is to study principally quasi-injective
modules and semi-injective modules. We give the details of proofs of

known results, supply some example, and add few new results.
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